
DRAFTUPC Language Specifications
Version 1.3 Draft 4

A publication of the UPC Consortium

September 12, 2013

Draft Note:
This document is a draft and has not been ratified by the UPC consortium.
All contents should be considered speculative and subject to change. Change
annotations appearing in this draft are relative to the baseline Version 1.3 Draft
1, which is believed to be semantically identical in every detail to UPC language
specification version 1.2 (ratified May 2005). Change annotations in the spec
body are for reviewer convenience only and are not normative, nor will they
appear in the final draft.

To learn more about planned changes or participate in the UPC specification
revision process, please visit: http://code.google.com/p/upc-specification/

UPC Language Specifications Version 1.3 Draft 4

List of Changes
Issue #100: Update introduction section 9
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 11
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 11
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 12
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 12
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 12
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 12
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 12
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 13
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 13
Issue #4: Progress guarantee of upc_notify and upc_wait 14
Issue #58: Bring Conformance section into agreement with the C99 specifica-

tion . 14
Issue #55: Miscellaneous specification document typographical errors 18
Issue #32: modification: THREADS/MYTHREAD have "integral value" rather

than "type int" . 19
Issue #32: modification: THREADS/MYTHREAD have "integral value" rather

than "type int" . 19
Issue #33: clarification: MYTHREAD and THREADS are expressions (cannot

assign to or take address of them) 19
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 20
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 21
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 21
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 21
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 22
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 22
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 22
Issue #104: Clarify relational operators (>,<,>=,<=) applied to PTS operands

. 22
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 23
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 23
Issue #106: Clarify contiguity of local slice of a shared array 23
Issue #106: Clarify contiguity of local slice of a shared array 24
Issue #106: Clarify contiguity of local slice of a shared array 24
Issue #106: Clarify contiguity of local slice of a shared array 24

2 List of Changes

http://code.google.com/p/upc-specification/issues/detail?id=100
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=4
http://code.google.com/p/upc-specification/issues/detail?id=58
http://code.google.com/p/upc-specification/issues/detail?id=58
http://code.google.com/p/upc-specification/issues/detail?id=55
http://code.google.com/p/upc-specification/issues/detail?id=32
http://code.google.com/p/upc-specification/issues/detail?id=32
http://code.google.com/p/upc-specification/issues/detail?id=32
http://code.google.com/p/upc-specification/issues/detail?id=32
http://code.google.com/p/upc-specification/issues/detail?id=33
http://code.google.com/p/upc-specification/issues/detail?id=33
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=104
http://code.google.com/p/upc-specification/issues/detail?id=104
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=106
http://code.google.com/p/upc-specification/issues/detail?id=106
http://code.google.com/p/upc-specification/issues/detail?id=106
http://code.google.com/p/upc-specification/issues/detail?id=106

UPC Language Specifications Version 1.3 Draft 4

Issue #104: Clarify relational operators (>,<,>=,<=) applied to PTS operands
. 24

Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 25
Issue #65: Define a null pointer-to-shared in terms of C99’s "null pointer con-

stant" . 25
Issue #70: Clarification: how is type compatibility defined when one/both

pointer-to-shared target types are incomplete? 25
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 25
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 25
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 25
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 26
Issue #71: Clarification: can the [*] layout qualifier be applied to a typedef? . 28
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 29
Issue #110: Clarify interaction of shared with effective type for accesses . . . 29
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 31
Issue #95: Clarification: can THREADS appear more than once in a PTS

typedef (in a dynamic threads environment)? 31
Issue #94: Clarification: dynamic threads and the constraint "when multiplied

by an integer expression" . 32
Issue #15: Add constraint: a declaration of an array with indefinite block size

must have compile-time constant dimensions 32
Issue #78: Remove shared array initialization 32
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 32
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 32
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 32
Issue #94: Clarification: dynamic threads and the constraint "when multiplied

by an integer expression" . 33
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 33
Issue #64: Barrier statement optional expression type is an integer type, not

just ’int’ . 35
Issue #51: clarification: revise text to eliminate an ambiguity in barrier match-

ing semantics . 35
Issue #59: The affinity test on integer values in a upc_forall statement is

undefined for negative values . 37
Issue #55: Miscellaneous specification document typographical errors 38
Issue #88: Nested upc_forall semantics 38
Issue #29: Correct example 2 in the UPC specification in the discussion of

upc_forall . 39

List of Changes 3

http://code.google.com/p/upc-specification/issues/detail?id=104
http://code.google.com/p/upc-specification/issues/detail?id=104
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=65
http://code.google.com/p/upc-specification/issues/detail?id=65
http://code.google.com/p/upc-specification/issues/detail?id=70
http://code.google.com/p/upc-specification/issues/detail?id=70
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=71
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=110
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=95
http://code.google.com/p/upc-specification/issues/detail?id=95
http://code.google.com/p/upc-specification/issues/detail?id=94
http://code.google.com/p/upc-specification/issues/detail?id=94
http://code.google.com/p/upc-specification/issues/detail?id=15
http://code.google.com/p/upc-specification/issues/detail?id=15
http://code.google.com/p/upc-specification/issues/detail?id=78
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=94
http://code.google.com/p/upc-specification/issues/detail?id=94
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=64
http://code.google.com/p/upc-specification/issues/detail?id=64
http://code.google.com/p/upc-specification/issues/detail?id=51
http://code.google.com/p/upc-specification/issues/detail?id=51
http://code.google.com/p/upc-specification/issues/detail?id=59
http://code.google.com/p/upc-specification/issues/detail?id=59
http://code.google.com/p/upc-specification/issues/detail?id=55
http://code.google.com/p/upc-specification/issues/detail?id=88
http://code.google.com/p/upc-specification/issues/detail?id=29
http://code.google.com/p/upc-specification/issues/detail?id=29

UPC Language Specifications Version 1.3 Draft 4

Issue #83: Strengthen the "default" pragma from "implementation-defined" to
"relaxed" . 40

Issue #105: Update the predefined macro "__UPC_VERSION__" for 1.3 . . 41
Issue #10: Add upc_types.h to define common library types 42
Issue #91: Library section boilerplate spec text 43
Issue #12: Library: Collective Deallocation Functions 43
Issue #82: Remove the deprecated upc_local_alloc function 45
Issue #82: Remove the deprecated upc_local_alloc function 45
Issue #12: Library: Collective Deallocation Functions 45
Issue #12: Library: Collective Deallocation Functions 45
Issue #106: Clarify contiguity of local slice of a shared array 47
Issue #3: Clarifying pointers to shared arrays, and multi-D shared arrays . . 48
Issue #12: Library: Collective Deallocation Functions 48
Issue #12: Library: Collective Deallocation Functions 50
Issue #49: clarification: unlock of freed lock 50
Issue #12: Library: Collective Deallocation Functions 50
Issue #50: clarification: overlapping memory copies undefined by presence of

"restrict" keyword . 53
Issue #50: clarification: overlapping memory copies undefined by presence of

"restrict" keyword . 53
Issue #50: clarification: overlapping memory copies undefined by presence of

"restrict" keyword . 54
Issue #10: Add upc_types.h to define common library types 55
Issue #54: Write section "Proposed Additions and Extensions" 59

4 List of Changes

http://code.google.com/p/upc-specification/issues/detail?id=83
http://code.google.com/p/upc-specification/issues/detail?id=83
http://code.google.com/p/upc-specification/issues/detail?id=105
http://code.google.com/p/upc-specification/issues/detail?id=10
http://code.google.com/p/upc-specification/issues/detail?id=91
http://code.google.com/p/upc-specification/issues/detail?id=12
http://code.google.com/p/upc-specification/issues/detail?id=82
http://code.google.com/p/upc-specification/issues/detail?id=82
http://code.google.com/p/upc-specification/issues/detail?id=12
http://code.google.com/p/upc-specification/issues/detail?id=12
http://code.google.com/p/upc-specification/issues/detail?id=106
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=12
http://code.google.com/p/upc-specification/issues/detail?id=12
http://code.google.com/p/upc-specification/issues/detail?id=49
http://code.google.com/p/upc-specification/issues/detail?id=12
http://code.google.com/p/upc-specification/issues/detail?id=50
http://code.google.com/p/upc-specification/issues/detail?id=50
http://code.google.com/p/upc-specification/issues/detail?id=50
http://code.google.com/p/upc-specification/issues/detail?id=50
http://code.google.com/p/upc-specification/issues/detail?id=50
http://code.google.com/p/upc-specification/issues/detail?id=50
http://code.google.com/p/upc-specification/issues/detail?id=10
http://code.google.com/p/upc-specification/issues/detail?id=54

UPC Language Specifications Version 1.3 Draft 4

Acknowledgments

1 Many have contributed to the ideas and concepts behind these specifica-
tions. William Carlson, Jesse Draper, David Culler, Katherine Yelick, Eu-
gene Brooks, and Karen Warren are the authors of the initial UPC language
concepts and specifications. Tarek El-Ghazawi, William Carlson, and Jesse
Draper are the authors of the first formal version of the specifications. Be-
cause of the numerous contributions to the specifications, no explicit authors
are currently mentioned. We also would like to acknowledge the role of the
participants in the first UPC workshop: the support and participation of
Compaq, Cray, HP, Sun, and CSC; the abundant input of Kevin Harris and
Sébastien Chauvin and the efforts of Lauren Smith; and the efforts of Brian
Wibecan and Greg Fischer were invaluable in bringing these specifications to
version 1.0.

2 Version 1.1 is the result of the contributions of many in the UPC community.
In addition to the continued support of all those mentioned above, the efforts
of Dan Bonachea were invaluable in this effort.

3 Version 1.2 is also the result of many contributors. Worthy of special note
(in addition to the continued support of those mentioned above) are the sub-
stantial contributions to many aspects of the specifications by Jason Duell;
Many have contributed to the ideas and concepts behind the UPC collectives
specifications. Elizabeth Wiebel and David Greenberg are the authors of the
first draft of that specification. Steve Seidel organized the effort to refine it
into its current form. Thanks go to many in the UPC community for their in-
terest and helpful comments, particularly Dan Bonachea, Bill Carlson, Jason
Duell and Brian Wibecan. Version 1.2 also includes the UPC I/O specifica-
tion which is the result of efforts by Tarek El Ghazawi, Francois Cantonnet,
Proshanta Saha, Rajeev Thakur, Rob Ross, and Dan Bonachea. Finally, it
also includes the substantial contributions to the UPC memory consistency
model by Kathy Yelick, Dan Bonachea, and Charles Wallace.

4 Version 1.3 is also the result of many contributors. Gary Funck created a
“Google Code Project” that was used to track issues, changes, and contribu-
tions. Details can be found at http://code.google.com/p/upc-specification.

5 Members of the UPC consortium may be contacted via the world wide web
at http://upc-lang.org, where an archived mailing list may be joined. Com-

Acknowledgments 5

UPC Language Specifications Version 1.3 Draft 4

ments on these specifications are always welcome.

6 Acknowledgments

UPC Language Specifications Version 1.3 Draft 4

Contents

List of Changes 2

Acknowledgments 5

Contents 7

Introduction 9

1 Scope 9

2 Normative references 9

3 Terms, definitions and symbols 10

4 Conformance 14

5 Environment 15
5.1 Conceptual models . 15

5.1.1 Translation environment 15
5.1.2 Execution environment 15

6 Language 18
6.1 Notations . 18
6.2 Keywords . 18
6.3 Predefined identifiers . 19

6.3.1 THREADS . 19
6.3.2 MYTHREAD . 19
6.3.3 UPC_MAX_BLOCK_SIZE 19

6.4 Expressions . 20
6.4.1 Unary Operators . 20
6.4.2 Pointer-to-shared arithmetic 22
6.4.3 Cast and assignment expressions 24
6.4.4 Address operators . 26

6.5 Declarations . 26
6.5.1 Type qualifiers . 27
6.5.2 Declarators . 30

Contents 7

UPC Language Specifications Version 1.3 Draft 4

6.6 Statements and blocks . 34
6.6.1 Barrier statements . 34
6.6.2 Iteration statements 36

6.7 Preprocessing directives . 39
6.7.1 UPC pragmas . 40
6.7.2 Predefined macro names 41

7 Library 42
7.1 Standard headers . 42
7.2 UPC utilities <upc.h> . 43

7.2.1 Termination of all threads 43
7.2.2 Shared memory allocation functions 43
7.2.3 Pointer-to-shared manipulation functions 46
7.2.4 Lock functions . 48
7.2.5 Shared string handling functions 52

7.3 UPC standard types <upc_types.h> 55
7.3.1 Operation designator (upc_op_t) 55
7.3.2 Type designator (upc_type_t) 56
7.3.3 Synchronization flags (upc_flag_t) 57
7.3.4 Memory Semantics of Library Functions 57

A Additions and Extensions 59

B Formal UPC Memory Consistency Semantics 61
B.1 Definitions . 61
B.2 Memory Access Model . 63
B.3 Consistency Semantics of Standard Libraries and Language

Operations . 65
B.3.1 Consistency Semantics of Synchronization Operations . 65
B.3.2 Consistency Semantics of Standard Library Calls . . . 66

B.4 Properties Implied by the Specification 69
B.5 Examples . 71
B.6 Formal Definition of Precedes 79

C UPC versus C Standard Section Numbering 83

References 84

Index 85

8 Contents

UPC Language Specifications Version 1.3 Draft 4

Introduction

1 UPC is a parallel extension to the C Standard. UPC follows the parti-
tioned global address space [CAG93] programming model. The first version
of UPC, known as version 0.9, was published in May of 1999 as technical
report [CDC99] at the Institute for Defense Analyses Center for Computing
Sciences.

2 Version 1.0 of UPC was initially discussed at the UPC workshop, held in
Bowie, Maryland, 18-19 May, 2000. The workshop had about 50 partici-
pants from industry, government, and academia. This version was adopted
with modifications in the UPC mini workshop meeting held during Super-
computing 2000, in November 2000, in Dallas, and finalized in February
2001.

3 Version 1.1 of UPC was initially discussed at the UPC workshop, held in
Washington, DC, 3-5 March, 2002, and finalized in October 2003.

4 Version 1.2 of UPC was initially discussed at the UPC workshop held in
Phoenix, AZ, 20 November 2003, and finalized in May 2005.

5 Version 1.3 of UPC was developed throughout 2012.

1 Scope

1 This document focuses only on the UPC specifications that extend the C
Standard to an explicit parallel C based on the partitioned global address
space model. All C specifications as per ISO/IEC 9899 [ISO/IEC00] are con-
sidered a part of these UPC specifications, and therefore will not be addressed
in this document.

2 Small parts of the C Standard [ISO/IEC00] may be repeated for self-containment
and clarity of a subsequent UPC extension definition.

2 Normative references

Introduction 9

UPC Language Specifications Version 1.3 Draft 4

ADDED [UPC-LIB-REQ] and [UPC-LIB-OPT]i

1 The following documents and their identified normative references constitute
provisions of these UPC specifications. For dated references, only the edition
cited applies. For undated references, the latest edition of the referenced
document applies.

2 ISO/IEC 9899: 1999(E), Programming languages - C [ISO/IEC00]

3 UPC Required Library Specifications [UPC-LIB-REQ]

4 UPC Optional Library Specifications [UPC-LIB-OPT]

5 The relationship between the section numbering used in the C Standard
[ISO/IEC00] and that used in this document is given in Appendix C and
noted at the beginning of each corresponding section.

6 Implementations shall document the exact revisions of [UPC-LIB-REQ] and
[UPC-LIB-OPT] to which they conform.

3 Terms, definitions and symbols

1 For the purpose of these specifications the following definitions apply.

2 Other terms are defined where they appear in italic type or on the left hand
side of a syntactical rule.

3.1

1 thread
an instance of execution initiated by the execution environment at program

startup.

3.2

1 ultimate element type
for non-array types, the type itself. For an array type “array of T”, the

iIssue #100: Update introduction section

10 Terms, definitions and symbols §3

http://code.google.com/p/upc-specification/issues/detail?id=100

UPC Language Specifications Version 1.3 Draft 4

ultimate element type of T.

SECTION ADDEDii

3.3

1 shared type
a type whose ultimate element type is shared-qualified.

SECTION ADDEDiii

3.4

1 object
region of data storage in the execution environment which can represent

values.

3.4.1

1 shared object
an object allocated using a shared-qualified declarator or by a library func-

tion defined to create shared objects.

2 NOTE All threads may access shared objects.1

3.4.2

1 private object
any object which is not a shared object.

2 NOTE Each thread declares and creates its own private objects which no
other thread can access. 2

iiIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays
iiiIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays
1The file scope declaration shared int x; creates a single object which any thread

may access.
2The file scope declaration int y; creates a separate object for each thread to access.

§3.3 11

http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3

UPC Language Specifications Version 1.3 Draft 4

3.4.3

1 shared array
an array with shared typeelements that have shared qualified typeiv.

3.5

1 affinity
logical association between shared objects and threads. Each byte in a

shared objectelement of data storage that contains shared objectsvhas affinity
to exactly one thread. The affinity of a shared object is the same as that of
the first byte in the object.3vi

3.6

1 pointer-to-shared
a pointer whose referenced type is a shared typeshared-qualifiedvii.

3.7

1 pointer-to-local
a pointer whose referenced type is not a shared typeshared-qualifiedviii.

3.8

1 access
<execution-time action> to read or modify the value of an object by a

ivIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays
vIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays
3For non-array shared objects, all bytes in the object have the same affinity as the

object itself. This is not necessarily true for shared array objects, which may span multiple
threads.

viIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays
viiIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays

viiiIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays

12 §3.4.3

http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3

UPC Language Specifications Version 1.3 Draft 4

thread.

3.8.1

1 shared access
an access using an expression whose type is a shared typeshared-qualifiedix.

3.8.1.1

1 strict shared read
a shared read access which is determined to be strict according to section

6.5.1.1 of this specification.

3.8.1.2

1 strict shared write
a shared modify access which is determined to be strict according to section

6.5.1.1 of this specification.

3.8.1.3

1 relaxed shared read
a shared read access which is determined to be relaxed according to section

6.5.1.1 of this specification.

3.8.1.4

1 relaxed shared write
a shared modify access which is determined to be relaxed according to section
6.5.1.1 of this specification.

3.8.2

1 local access
an access using an expression whose type is not a shared typeshared-qualifiedx.

ixIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays
xIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays

§3.8.1 13

http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3

UPC Language Specifications Version 1.3 Draft 4

3.9

1 collective
constraint placed on some language operations which requires evaluation of

such operations to be matched across all threads.4 The behavior of collec-
tive operations is undefined unless all threads execute the same sequence of
collective operations.

3.10

1 single-valued
an operand to a collective operation, which has the same value on every

thread. The behavior of the operation is otherwise undefined.

3.11

1 phase
an unsigned integer value associated with a pointer-to-shared which indi-

cates the element-offset within an affinity block; used in pointer-to-shared
arithmetic to determine affinity boundaries.

4 Conformance

TWO PARAGRAPHS THAT DUPLICATE C99 REMOVEDxii

1 All terminology and requirements defined in [ISO/IEC00 Sec. 4] also apply
to this document and UPC implementations.

4A collective operation need not provide any actual synchronization between threads,
unless otherwise noted. The collective requirement simply states a relative ordering prop-
erty of calls to collective operations that must be maintained in the parallel execution trace
for all executions of any legal program. Some implementations may include unspecified
synchronization between threads within collective operations, but programs must not rely
upon the presence or absence ofxisuch unspecified synchronization for correctness.

xiIssue #4: Progress guarantee of upc_notify and upc_wait
xiiIssue #58: Bring Conformance section into agreement with the C99 specification

14 §3.9

http://code.google.com/p/upc-specification/issues/detail?id=4
http://code.google.com/p/upc-specification/issues/detail?id=58

UPC Language Specifications Version 1.3 Draft 4

5 Environment

5.1 Conceptual models

5.1.1 Translation environment

5.1.1.1 Threads environment

1 A UPC program is translated under either a static THREADS environment
or a dynamic THREADS environment. Under the static THREADS envi-
ronment, the number of threads to be used in execution is indicated to the
translator in an implementation-defined manner. If the actual execution en-
vironment differs from this number of threads, the behavior of the program
is undefined.

5.1.2 Execution environment

1 This subsection provides the UPC parallel extensions of [ISO/IEC00 Sec.
5.1.2]

2 A UPC program consists of a set of threads which may allocate both shared
and private objects. Accesses to these objects are defined as either local or
shared, based on the type of the access. Each thread’s local accesses behave
independently and exactly as described in [ISO/IEC00]. All shared accesses
behave as described herein.

3 There is an implicit upc_barrier at program startup and termination. Ex-
cept as explicitly specified by upc_barrier operations or by certain library
functions (all of which are explicitly documented), there are no other barrier
synchronization guarantees among the threads.

Forward references: upc_barrier (6.6.1).

5.1.2.1 Program startup

1 In the execution environment of a UPC program, derived from the hosted
environment as defined in the C Standard [ISO/IEC00], each thread calls the

§5 Environment 15

UPC Language Specifications Version 1.3 Draft 4

UPC program’s main() function5.

5.1.2.2 Program termination

1 A program is terminated by the termination of all the threads6 or a call to
the function upc_global_exit().

2 Thread termination follows the C Standard definition of program termination
in [ISO/IEC00 Sec. 5.1.2.2.3]. A thread is terminated by reaching the }
that terminates the main function, by a call to the exit function, or by a
return from the initial main. Note that thread termination does not imply
the completion of all I/O and that shared data allocated by a thread either
statically or dynamically shall not be freed before UPC program termination.

Forward references: upc_global_exit (7.2.1).

5.1.2.3 Program execution

1 Thread execution follows the C Standard definition of program execution in
[ISO/IEC00 Sec. 5.1.2.3]. This section describes the additional operational
semantics users can expect from accesses to shared objects. In a shared
memory model such as UPC, operational descriptions of semantics are insuf-
ficient to completely and definitively describe a memory consistency model.
Therefore Appendix B presents the formal memory semantics of UPC. The
information presented in this section is consistent with the formal semantic
description, but not complete. Therefore, implementations of UPC based on
this section alone may be non-compliant.

2 All shared accesses are classified as being either strict or relaxed, as described
in sections 6.5.1.1 and 6.7.1. Accesses to shared objects via pointers-to-local
behave as relaxed shared accesses with respect to memory consistency. Most
synchronization-related language operations and library functions (notably
upc_fence, upc_notify, upc_wait, and upc_lock/upc_unlock) imply the con-
sistency effects of a strict access.

3 In general, any sequence of purely relaxed shared accesses issued by a given
thread in an execution may appear to be arbitrarily reordered relative to
program order by the implementation, and different threads need not agree

5e.g., in the program main(){ printf("hello"); } , each thread prints hello.
6A barrier is automatically inserted at thread termination.

16 Program termination §5.1.2.2

UPC Language Specifications Version 1.3 Draft 4

upon the order in which such accesses appeared to have taken place. The
only exception to the previous statement is that two relaxed accesses is-
sued by a given thread to the same memory location where at least one is a
write will always appear to all threads to have executed in program order.
Consequently, relaxed shared accesses should never be used to perform deter-
ministic inter-thread synchronization - synchronization should be performed
using language/library operations whenever possible, or otherwise using only
strict shared reads and strict shared writes.

4 Strict accesses always appear (to all threads) to have executed in program
order with respect to other strict accesses, and in a given execution all threads
observe the effects of strict accesses in a manner consistent with a single,
global total order over the strict operations. Consequently, an execution of
a program whose only accesses to shared objects are strict is guaranteed to
behave in a sequentially consistent [Lam79] manner.

5 When a thread’s program order dictates a set of relaxed operations followed
by a strict operation, all threads will observe the effects of the prior relaxed
operations made by the issuing thread (in some order) before observing the
strict operation. Similarly, when a thread’s program order dictates a strict
access followed by a set of relaxed accesses, the strict access will be ob-
served by all threads before any of the subsequent relaxed accesses by the
issuing thread. Consequently, strict operations can be used to synchronize
the execution of different threads, and to prevent the apparent reordering of
surrounding relaxed operations across a strict operation.

6 NOTE: It is anticipated that most programs will use the strict synchro-
nization facilities provided by the language and library (e.g. barriers, locks,
etc) to synchronize threads and prevent non-determinism arising from data
races. A data race may occur whenever two or more relaxed operations from
different threads access the same location with no intervening strict synchro-
nization, and at least one such access is a write. Programs which produce
executions that are always free of data races (as formally defined in Appendix
B), are guaranteed to behave in a sequentially consistent manner.

Forward references: upc_fence, upc_notify, upc_wait, upc_barrier
(6.6.1). upc_lock, upc_unlock (7.2.4).

§5.1.2.3 Program execution 17

UPC Language Specifications Version 1.3 Draft 4

6 Language

6.1 Notations

1 In the syntax notation used in this section, syntactic categories (nontermi-
nals) are indicated by italic type, and literal words and character set members
(terminals) by bold type. A colon (:) following a nonterminal introduces its
definition. An optional symbol is indicated by the subscript “opt”, so that

{ 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑜𝑝𝑡 }

indicates an optional expression enclosed in braces.

2 When syntactic categories are referred to in the main text, they are not
italicized and words are separated by spaces instead of hyphens.

6.2 Keywords

1 This subsection provides the UPC extensions of [ISO/IEC00 Sec 6.4.1].

Syntax

2 upc_keyword:
MYTHREAD upc_barrier upc_localsizeof
relaxed upc_blocksizeof UPC_MAX_BLOCK_SIZE
shared upc_elemsizeof upc_notify
strict upc_fence upc_wait
THREADS upc_forall

UPC_MAX_BLOCKSIZE changed to UPC_MAX_BLOCK_SIZE in the
above tablexiii

Semantics

3 In addition to the keywords defined in [ISO/IEC00 Sec 6.4.1], the above
tokens (case sensitive) are reserved (in translation phases 7 and 8) for use as
keywords and shall not be otherwise used.

xiiiIssue #55: Miscellaneous specification document typographical errors

18 Language §6

http://code.google.com/p/upc-specification/issues/detail?id=55

UPC Language Specifications Version 1.3 Draft 4

6.3 Predefined identifiers

1 This subsection provides the UPC parallel extensions of [ISO/IEC00 Sec.
6.4.2.2].

6.3.1 THREADS

1 THREADS is an expression with integral valuea value of type intxiv; it specifies
the number of threads and has the same value on every thread. Under the
static THREADS translation environment, THREADS is an integer constant
suitable for use in #if preprocessing directives.

6.3.2 MYTHREAD

1 MYTHREAD is an expression with integral valuea value of type intxv; it specifies
the unique thread index.7xviThe range of possible values is 0..THREADS-18.

6.3.3 UPC_MAX_BLOCK_SIZE

1 UPC_MAX_BLOCK_SIZE is a predefined integer constant value. It indicates the
maximum value9 allowed in a layout qualifier for shared data. It shall be
suitable for use in #if preprocessing directives.

xivIssue #32: modification: THREADS/MYTHREAD have "integral value" rather than
"type int"

xvIssue #32: modification: THREADS/MYTHREAD have "integral value" rather than
"type int"

7The definition of MYTHREAD and THREADS as expressions, not objects or l-values,
means one cannot assign to them or take their address.

xviIssue #33: clarification: MYTHREAD and THREADS are expressions (cannot assign
to or take address of them)

8e.g., the program main(){ printf("%d ",MYTHREAD); } , prints the numbers 0
through THREADS-1, in some order.

9 e.g. shared [UPC_MAX_BLOCK_SIZE+1] char x[UPC_MAX_BLOCK_SIZE+1] and
shared [*] char x[(UPC_MAX_BLOCK_SIZE+1)*THREADS] are translation errors.

§6.3 Predefined identifiers 19

http://code.google.com/p/upc-specification/issues/detail?id=32
http://code.google.com/p/upc-specification/issues/detail?id=32
http://code.google.com/p/upc-specification/issues/detail?id=32
http://code.google.com/p/upc-specification/issues/detail?id=32
http://code.google.com/p/upc-specification/issues/detail?id=33
http://code.google.com/p/upc-specification/issues/detail?id=33

UPC Language Specifications Version 1.3 Draft 4

6.4 Expressions

1 This subsection provides the UPC parallel extensions of [ISO/IEC00 Sec.
6.5]. In particular, the unary operator expressions in [ISO/IEC00 Sec. 6.5.3]
are extended with new syntax.

6.4.1 Unary Operators

Syntax

1 unary-expression

...

sizeof unary-expression

sizeof (type-name)

upc_localsizeof unary-expression

upc_localsizeof (type-name)

upc_blocksizeof unary-expression

upc_blocksizeof (type-name)

upc_elemsizeof unary-expression

upc_elemsizeof (type-name)

6.4.1.1 The sizeof operator

Semantics

1 The sizeof operator will result in an integer value which is not constant
when applied to a definitely blocked shared array under the dynamic THREADS
environment.

6.4.1.2 The upc_localsizeof operator

Constraints

1 The upc_localsizeof operator shall apply only to a shared type or an
expression with shared typeshared-qualified expressions or shared-qualified

20 Expressions §6.4

UPC Language Specifications Version 1.3 Draft 4

typesxvii. All constraints on the sizeof operator [ISO/IEC00 Sec. 6.5.3.4]
also apply to this operator.

Semantics

2 The upc_localsizeof operator returns the size, in bytes, of the local portion
of its operand, which may be a shared object or a sharedshared-qualifiedxviiitype.
It returns the same value on all threads; the value is an upper bound of the
size allocated with affinity to any single thread and may include an un-
specified amount of padding. The result of upc_localsizeof is an integer
constant.

3 The type of the result is size_t.

4 If the operand is an expression, that expression is not evaluated.

6.4.1.3 The upc_blocksizeof operator

Constraints

1 The upc_blocksizeof operator shall apply only to a shared type or an
expression with shared typeshared-qualified expressions or shared-qualified
typesxix. All constraints on the sizeof operator [ISO/IEC00 Sec. 6.5.3.4]
also apply to this operator.

Semantics

2 The upc_blocksizeof operator returns the block size of the ultimate ele-
ment type of the operandthe operand, which may be a shared object or a
shared-qualified typexx. The block size is the value specified in the layout
qualifier of the type declaration. If there is no layout qualifier, the block size
is 1. The result of upc_blocksizeof is an integer constant.

3 If the operand of upc_blocksizeof has indefinite block size, the value of
upc_blocksizeof is 0.

4 The type of the result is size_t.

5 If the operand is an expression, that expression is not evaluated.

xviiIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays
xviiiIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays

xixIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays
xxIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays

§6.4.1.3 The upc_blocksizeof operator 21

http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3

UPC Language Specifications Version 1.3 Draft 4

Forward references: indefinite block size (6.5.1.1).

6.4.1.4 The upc_elemsizeof operator

Constraints

1 The upc_elemsizeof operator shall apply only to a shared type or an expres-
sion with shared typeshared-qualified expressions or shared-qualified typesxxi.
All constraints on the sizeof operator [ISO/IEC00 Sec. 6.5.3.4] also apply
to this operator.

Semantics

2 The upc_elemsizeof operator returns the size, in bytes, of the ultimate ele-
ment type of its operand.highest-level (leftmost) type that is not an array.xxiiFor
a non-array operandnon-array objectsxxiii, upc_elemsizeof returns the same
value as sizeof. The result of upc_elemsizeof is an integer constant.

3 The type of the result is size_t.

4 If the operand is an expression, that expression is not evaluated.

6.4.2 Pointer-to-shared arithmetic

Constraints

1 No binary operators shall be applied to one pointer-to-shared and one pointer-
to-local.

2 Relational operators (as defined in [ISO/IEC00 Sec 6.5.8]) shall not be ap-
plied to a pointer-to-shared with incomplete type.10 xxiv

Semantics

3 When an expression that has integer type is added to or subtracted from a
pointer-to-shared, the result has the type of the pointer-to-shared operand. If
the pointer-to-shared operand points to an element of a shared array object,

xxiIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays
xxiiIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays

xxiiiIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays
10Eg. The (>,<,>=,<=) operators may not have an operand with (shared void *)

type.
xxivIssue #104: Clarify relational operators (>,<,>=,<=) applied to PTS operands

22 The upc_elemsizeof operator §6.4.1.4

http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=104

UPC Language Specifications Version 1.3 Draft 4

and the shared array is large enough, the result points to an element of the
shared array. If the shared array is declared with indefinite block size, the
result of the pointer-to-shared arithmetic is identical to that described for
normal C pointers in [ISO/IEC00 Sec. 6.5.6], except that the thread of the
new pointer shall be the same as that of the original pointer and the phase
component is defined to always be zero. If the shared array has a definite
block size, then the following example describes pointer arithmetic:

shared [B] T *p, *p1; /* B a positive integer,
T not a shared type */

int i;

p1 = p + i;

Changed referenced type of pointer.xxv

4 After this assignment the following equations must hold in any UPC imple-
mentation. In each case the div operator indicates integer division rounding
towards negative infinity and the mod operator returns the nonnegative re-
mainder:11

ptrdiff_t elem_delta = i * (sizeof(T) / upc_elemsizeof(*p))
upc_phaseof(p1) == (upc_phaseof(p) + elem_delta) mod B
upc_threadof(p1) == (upc_threadof(p)

+ (upc_phaseof(p) + elem_delta) div B)
mod THREADS

Changed formulas to support multi-dimensional shared arrays.xxvi

5 In addition, the correspondence between shared and local addresses and
arithmetic is defined using the following constructs:

T *P1, *P2; /* T is not a shared type */
shared [] T *S1, *S2;

P1 = (T*) S1; /* allowed if upc_threadof(S1) == MYTHREAD */
P2 = (T*) S2; /* allowed if upc_threadof(S2) == MYTHREAD */

Declaration of S1 and S1 changed to indefinite blocksize to accommodate
xxvIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays

11The C “%” and “/” operators do not have the necessary properties
xxviIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays

§6.4.2 Pointer-to-shared arithmetic 23

http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3

UPC Language Specifications Version 1.3 Draft 4

new constraint. Comments clarified.xxvii

6 For all S1 and S2 that point to two distinct objects with affinity to the same
thread, where both are subobjects contained in the same shared array whose
ultimate element type is a qualified version of T: elements of the same shared
array object which have affinity to the same thread: xxviii

• S1 and P1 shall point to the same object.

• S2 and P2 shall point to the same object.

• The expression P1 + (S2 - S1) == P2 shall evaluate to 1.12 xxix

Constraint on upc_addrfield moved to Section 7.2.3.4.xxx

7 Two compatible pointers-to-shared which point to the same object (i.e. hav-
ing the same address and thread components) shall compare as equal accord-
ing to == and !=, regardless of whether the phase components match.

8 When two pointers-to-shared are subtracted, as described in [ISO/IEC00 Sec.
6.5.6], the result is undefined unless there exists an integer x, representable
as a ptrdiff_t, such that (pts1 + x) == pts2 AND upc_phaseof(pts1 +
x) == upc_phaseof(pts2). In this case (pts2 - pts1) evaluates to x.

9 When two pointers-to-shared are compared using a relational operator, as
described in [ISO/IEC00 Sec 6.5.8], the expression pts1 ⊕ pts2 where ⊕
∈ {>,<,>=,<=} is equivalent to: (pts1 - pts2) ⊕ 0. If the result of the
subtraction is undefined, so is the result of the relational operator. xxxi

Forward references: upc_threadof (7.2.3.1), upc_phaseof (7.2.3.2).

6.4.3 Cast and assignment expressions

Constraints

1 A shared type qualifier shall not appear in a type cast where the corre-
xxviiIssue #106: Clarify contiguity of local slice of a shared array

xxviiiIssue #106: Clarify contiguity of local slice of a shared array
12This implies there is no padding inserted between blocks of shared array elements with

affinity to a thread.
xxixIssue #106: Clarify contiguity of local slice of a shared array
xxxIssue #106: Clarify contiguity of local slice of a shared array

xxxiIssue #104: Clarify relational operators (>,<,>=,<=) applied to PTS operands

24 Cast and assignment expressions §6.4.3

http://code.google.com/p/upc-specification/issues/detail?id=106
http://code.google.com/p/upc-specification/issues/detail?id=106
http://code.google.com/p/upc-specification/issues/detail?id=106
http://code.google.com/p/upc-specification/issues/detail?id=106
http://code.google.com/p/upc-specification/issues/detail?id=104

UPC Language Specifications Version 1.3 Draft 4

sponding pointer component of the type of the expression being cast is not
a shared typeshared-qualifiedxxxii. 13 An exception is made when a null
pointer constantthe constant expression 0xxxiiiis cast, the result is called the
null pointer-to-shared.14

Semantics

2 The casting or assignment from one pointer-to-shared to another in which ei-
ther the type size or block size differs, or either type is incomplete,xxxivresults
in a pointer with a zero phase, unless one of the types is a qualified or un-
qualified version of shared void*, the generic pointer-to-shared, in which
case the phase is preserved unchanged in the resulting pointer value.

3 If a generic pointer-to-shared is cast to a non-generic pointer-to-shared type
with indefinite block size or with block size of one, the result is a pointer
with a phase of zero. Otherwise, if the phase of the former pointer value is
not within the range of possible phases of the latter pointer type, the result
is undefined.

4 If a non-null pointer-to-shared is cast15 to a pointer-to-local16 and the affinity
of any byte comprisingxxxvthe pointed-to shared object is not to the current
thread, the result is undefined.

5 If a null pointer-to-shared is cast to a pointer-to-local, the result is a null
pointer.

6 BytesShared objectsxxxviwith affinity to a given thread containing shared ob-
jectsxxxviican be accessed by either pointers-to-shared or pointers-to-local of
that thread.

7 EXAMPLE 1:
xxxiiIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays

13i.e., pointers-to-local cannot be cast to pointers-to-shared.
xxxiiiIssue #65: Define a null pointer-to-shared in terms of C99’s "null pointer constant"

14[ISO/IEC00 Sec. 6.3.2.3/6.5.16.1] imply that an implicit cast is allowed for zero and
that all null pointers-to-shared compare equal.
xxxivIssue #70: Clarification: how is type compatibility defined when one/both pointer-
to-shared target types are incomplete?

15As such pointers are not type compatible, explicit casts are required.
16Accesses through such cast pointers are local accesses and behave accordingly.

xxxvIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays
xxxviIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays

xxxviiIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays

§6.4.3 Cast and assignment expressions 25

http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=65
http://code.google.com/p/upc-specification/issues/detail?id=70
http://code.google.com/p/upc-specification/issues/detail?id=70
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3

UPC Language Specifications Version 1.3 Draft 4

int i, *p;
shared int *q;
q = (shared int *)p; /* is not allowed */
if (upc_threadof(q) == MYTHREAD)

p = (int *) q; /* is allowed */

6.4.4 Address operators

Semantics

1 When the unary & is applied to a shared structure element of type T, the
result has type shared [] T *.

2 When the unary & is applied to an expression with a shared array type, the
result is a pointer-to-shared that points to the beginning of the pointed-to
shared array, whose referenced type matches that of the expression the unary
& was applied to. xxxviii

6.5 Declarations

1 UPC extends the declaration ability of C to allow shared types, shared data
layout across threads, and ordering constraint specifications.

Constraints

2 The declaration specifiers in a given declaration shall not include, either
directly or through one or more typedefs, both strict and relaxed.

3 The declaration specifiers in a given declaration shall not specify more than
one block size, either directly or indirectly through one or more typedefs.

Syntax

4 The following is the declaration definition as per [ISO/IEC00 Sec. 6.7], re-
peated here for self-containment and clarity of the subsequent UPC extension
specifications.

5 declaration:

declaration-specifiers init-declarator-list𝑜𝑝𝑡 ;
xxxviiiIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays

26 Address operators §6.4.4

http://code.google.com/p/upc-specification/issues/detail?id=3

UPC Language Specifications Version 1.3 Draft 4

6 declaration-specifiers:

storage-class-specifier declaration-specifiers𝑜𝑝𝑡

type-specifier declaration-specifiers𝑜𝑝𝑡

type-qualifier declaration-specifiers𝑜𝑝𝑡

function-specifier declaration-specifiers𝑜𝑝𝑡

7 init-declarator-list:

init-declarator

init-declarator-list , init-declarator

8 init-declarator:

declarator

declarator = initializer

Forward references: strict and relaxed type qualifiers (6.5.1.1).

6.5.1 Type qualifiers

1 This subsection provides the UPC parallel extensions of in [ISO/IEC00 Sec
6.7.3].

Syntax

2 type-qualifier:

const

restrict

volatile

shared-type-qualifier

reference-type-qualifier

6.5.1.1 The shared and reference type qualifiers

Syntax

1 shared-type-qualifier:

§6.5.1 Type qualifiers 27

UPC Language Specifications Version 1.3 Draft 4

shared layout-qualifier𝑜𝑝𝑡

2 reference-type-qualifier:

relaxed

strict

3 layout-qualifier:

[constant-expression𝑜𝑝𝑡]

[*]

Constraints

4 A reference type qualifier shall appear in a qualifier list only when the list
also contains a shared type qualifier.

5 A shared type qualifier can appear anywhere a type qualifier can appear
except that it shall not appear in the specifier-qualifier-list of a structure
declaration unless it qualifies a pointer’s referenced type, nor shall it appear
in any declarator where prohibited by section 6.5.2.17

6 A layout qualifier of [*] shall not appear in the declaration specifiers of a
pointer type.

7 A layout qualifier of [*] shall not appear in the declaration specifiers of a
declaration whose storage-class specifier is typedef. xxxix

8 A layout qualifier shall not appear in the type qualifiers for the referenced
type in a pointer to void type.

Semantics

9 Shared accesses shall be either strict or relaxed. Strict and relaxed shared
accesses behave as described in section 5.1.2.3 of this document.

10 An access shall be determined to be strict or relaxed as follows. If the
referenced type is strict-qualified or relaxed-qualified, the access shall be
strict or relaxed, respectively. Otherwise the access shall be determined to
be strict or relaxed by the UPC pragma rules, as described in section 6.6.1

17E.g., struct S1 { shared char * p1; }; is allowed, while struct S2 { char *
shared p2; }; is not.
xxxixIssue #71: Clarification: can the [*] layout qualifier be applied to a typedef?

28 The shared and reference type qualifiers §6.5.1.1

http://code.google.com/p/upc-specification/issues/detail?id=71

UPC Language Specifications Version 1.3 Draft 4

of this document.

11 The layout qualifier dictates the blocking factor for the type being shared
qualified. This factor is the nonnegative number of consecutive objects with
ultimate element type of the arrayelementsxl(when evaluating pointer-to-
shared arithmetic and array declarations) which have affinity to the same
thread. If the optional constant expression is 0 or is not specified (i.e. []),
this indicates an indefinite blocking factor where all elements have affinity
to the same thread. If there is no layout qualifier, the blocking factor has the
default value (1). The blocking factor is also referred to as the block size.

12 A layout qualifier which does not specify an indefinite block size is said to
specify a definite block size .

13 The block size is a part of the type compatibility18

14 For purposes of assignment compatibility, generic pointers-to-shared behave
as if they always have a compatible block size.

15 The effective type of a shared object is the type as determined by [ISO/IEC00
Sec. 6.5], with the top-level (rightmost) shared qualifier removed.19 xli

16 If the layout qualifier is of the form ‘[*]’, the shared object is distributed
as if it had a block size of

(sizeof(a) / upc_elemsizeof(a) + THREADS - 1) / THREADS,

where ‘a’ is the array being distributed.

17 EXAMPLE 1: declaration of a shared scalar

strict shared int y;

xlIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays
18This is a powerful statement which allows, for example, that in an implementation

sizeof(shared int *) may differ from sizeof (shared [10] int *) and if T and S
are pointer-to-shared types with different block sizes, then T* and S* cannot be aliases.

19For example, in the file-scope declaration shared [10] int A[10*THREADS]; the ef-
fective type of the object A[0] is int. This implies the following lvalue expressions are all
permitted for accessing the object:

int x1 = A[0];
int x2 = *(int *)&(A[0]); // valid only for MYTHREAD==0
int x3 = *(shared [] int *)&(A[0]);

xliIssue #110: Clarify interaction of shared with effective type for accesses

§6.5.1.1 The shared and reference type qualifiers 29

http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=110

UPC Language Specifications Version 1.3 Draft 4

strict shared is the type qualifier.

18 EXAMPLE 2: automatic storage duration

void foo (void) {
shared int x; /* a shared automatic variable is not allowed */
shared int* y; /* a pointer-to-shared is allowed */
int * shared z; /*a shared automatic variable is not allowed*/
... }

19 EXAMPLE 3: inside a structure

struct foo {
shared int x; /* this is not allowed */
shared int* y; /* a pointer-to-shared is allowed */
};

Forward references: shared array (6.5.2.1)

6.5.2 Declarators

Syntax

1 The following is the declarator definition as per [ISO/IEC00 Sec. 6.7.5], re-
peated here for self-containment and clarity of the subsequent UPC extension
specifications.

2 declarator:

pointer𝑜𝑝𝑡 direct-declarator

3 direct-declarator:

identifier

(declarator)

direct-declarator [type-qualifier-list𝑜𝑝𝑡 assignment-expression𝑜𝑝𝑡]

direct-declarator [static type-qualifier-list𝑜𝑝𝑡 assignment-expression]

direct-declarator [type-qualifier-list static assignment-expression]

direct-declarator [type-qualifier-list𝑜𝑝𝑡 *]

direct-declarator (parameter-type-list)

30 Declarators §6.5.2

UPC Language Specifications Version 1.3 Draft 4

direct-declarator (identifier-list𝑜𝑝𝑡)

4 pointer:

* type-qualifier-list𝑜𝑝𝑡

* type-qualifier-list𝑜𝑝𝑡 pointer

5 type-qualifier-list:

type-qualifier

type-qualifier-list type-qualifier

Constraints

6 No type qualifier list shall specify more than one block size, either directly
or indirectly through one or more typedefs.20

7 No type qualifier list shall include both strict and relaxed either directly
or indirectly through one or more typedefs.

8 No object with automatic storage duration shall have a shared typea type
that is shared-qualified and no array object with automatic storage duration
shall have an element type that is shared-qualifiedxlii.

Semantics

9 All shared objects created by non-array static declarators have affinity with
thread zero.

6.5.2.1 Array declarators

1 This subsection provides the UPC parallel extensions of [ISO/IEC00 Sec.
6.7.5.2].

Constraints

2 When a UPC program is translated in the dynamic THREADS environ-
ment, the following restrictions apply: Every declaration of a shared array
with definite blocksize shall include the THREADS keyword exactly once, in
one dimension of the array (including through typedefs). Every array type

20While layout qualifiers are most often seen in array or pointer declarators, they are
allowed in all declarators. For example, shared [3] int y is allowed.

xliiIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays

§6.5.2.1 Array declarators 31

http://code.google.com/p/upc-specification/issues/detail?id=3

UPC Language Specifications Version 1.3 Draft 4

that is a shared type with definite blocksize shall include the THREADS key-
word at most once, in one dimension (including through typedefs). and an
array with shared-qualified elements is declared with definite blocksize, the
THREADS expression shall occur exactly once in one dimension of the array
declarator (including through typedefs). xliiiIn both cases, the THREADS
keyword shall only occur either alone or when multiplied by an integer con-
stant expression (as defined in [ISO/IEC00 Sec. 6.6]) with positive value.
Further, the THREADS expression shall only occur either alone or when
multiplied by an integer constant expression. xliv21

3 The THREADS keyword shall not appear in any array type that is a shared
array with indefinite blocksize under the dynamic THREADS environment.
xlv

4 If an init-declarator that declares a shared array includes an initializer, the
behavior is implementation-defined. xlvi

Semantics

5 The objects with ultimate element type that comprise a shared array are
distributed in a round robin fashion, by chunks of block-size objects, such
that the i-th objectElements of shared arrays are distributed in a round robin
fashion, by chunks of block-size elements, such that the i-th elementxlviihas
affinity with thread (⌊𝑖/𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒⌋ mod THREADS)(floor (i/block_size) mod THREADS)xlviii.

6 In an array declaration, the type qualifier applies to the ultimate element
type of the arrayelementsxlix.

7 For any shared array, a, upc_phaseof (&a) is zero.

8 EXAMPLE 1: declarations allowed in either static THREADS or dynamic
xliiiIssue #95: Clarification: can THREADS appear more than once in a PTS typedef

(in a dynamic threads environment)?
xlivIssue #94: Clarification: dynamic threads and the constraint "when multiplied by an

integer expression"
21In the static THREADS environment THREADS is an integer constant expression,

and is therefore valid in all dimensions.
xlvIssue #15: Add constraint: a declaration of an array with indefinite block size must

have compile-time constant dimensions
xlviIssue #78: Remove shared array initialization

xlviiIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays
xlviiiIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays

xlixIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays

32 Array declarators §6.5.2.1

http://code.google.com/p/upc-specification/issues/detail?id=95
http://code.google.com/p/upc-specification/issues/detail?id=95
http://code.google.com/p/upc-specification/issues/detail?id=94
http://code.google.com/p/upc-specification/issues/detail?id=94
http://code.google.com/p/upc-specification/issues/detail?id=15
http://code.google.com/p/upc-specification/issues/detail?id=15
http://code.google.com/p/upc-specification/issues/detail?id=78
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3
http://code.google.com/p/upc-specification/issues/detail?id=3

UPC Language Specifications Version 1.3 Draft 4

THREADS translation environments:

shared int x [10*THREADS];
shared int x [THREADS*(100*20)];
shared [] int x [10];

9 EXAMPLE 2: declarations allowed only in static THREADS translation
environment:

shared int x [10+THREADS];
shared [] int x [THREADS];
shared int x [10];
shared int x [THREADS][4*THREADS];
shared int x [THREADS*THREADS];
shared int x [THREADS*100*20];
shared int (**p)[THREADS][THREADS];
typedef shared int (*t)[THREADS][13][THREADS];
shared void *p = (shared int (*)[THREADS][THREADS])q;

SEVEN NEW EXAMPLES ADDED ABOVEl

10 EXAMPLE 3: declaration of a shared array

shared [3] int x [10];

shared [3] is the type qualifier of an array, x, of 10 integers. [3] is the
layout qualifier.

11 EXAMPLE 4:

typedef int S[10];
shared [3] S T[3*THREADS];

shared [3] applies to the ultimate element typeunderlying typeliof T, which
is int, regardless of the typedef. The array is blocked as if it were declared:

shared [3] int T[3*THREADS][10];

12 EXAMPLE 5:

shared [] double D[100];

lIssue #94: Clarification: dynamic threads and the constraint "when multiplied by an
integer expression"

liIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays

§6.5.2.1 Array declarators 33

http://code.google.com/p/upc-specification/issues/detail?id=94
http://code.google.com/p/upc-specification/issues/detail?id=94
http://code.google.com/p/upc-specification/issues/detail?id=3

UPC Language Specifications Version 1.3 Draft 4

All elements of the array D have affinity to thread 0. No THREADS dimension
is allowed in the declaration of D.

13 EXAMPLE 6:

shared [] long *p;

All elements accessed by subscripting or otherwise dereferencing p have affin-
ity to the same thread. That thread is determined by the assignment which
sets p.

6.6 Statements and blocks

1 This subsection provides the UPC parallel extensions of [ISO/IEC00 Sec.
6.8].

Syntax

2 statement:

labeled-statement

compound-statement

expression-statement

selection-statement

iteration-statement

jump-statement

synchronization-statement

6.6.1 Barrier statements

Syntax

1 synchronization-statement:

upc_notify expression𝑜𝑝𝑡 ;

upc_wait expression𝑜𝑝𝑡 ;

upc_barrier expression𝑜𝑝𝑡 ;

34 Statements and blocks §6.6

UPC Language Specifications Version 1.3 Draft 4

upc_fence ;

Constraints

2 expression shall have a type such that its value may be assigned to an object
ofliitype int.

Semantics

3 Each thread shall execute an alternating sequence of upc_notify and upc_wait
statements, starting with a upc_notify and ending with a upc_wait state-
ment. After a thread executes upc_notify the next collective operation it
executes must be a upc_wait.22 A synchronization phase consists of the ex-
ecution of all statements between the completion of one upc_wait and the
start of the next.

4 A upc_wait statement completes, and the thread enters the next synchro-
nization phase, only after all threads have completed the upc_notify state-
ment in the current synchronization phase.23 upc_wait and upc_notify are
collective operations.

5 The upc_fence statement is equivalent to a null strict access. This insures
that all shared accesses issued before the fence are complete before any after
it are issued.24

6 A null strict access is implied before25 a upc_notify statement and after a
upc_wait statement.26

7 If one or more threads provide optional expressions to upc_notify in the
current synchronization phase, then the subsequent upc_wait statement
of at least one thread shall interrupt the execution of the program in an

liiIssue #64: Barrier statement optional expression type is an integer type, not just ’int’

22This effectively prohibits issuing any collective operations between a upc_notify and
a upc_wait.

23Therefore, all threads are entering the same synchronization phase as they complete
the upc_wait statement.

24One implementation of upc_fence may be achieved by a null strict access: { static
shared strict int x; x = x;}

25After the evaluation of expression, if present
26This implies that shared accesses executed after the upc_notify and before the

upc_wait may occur in either the synchronization phase containing the upc_notify or
the next on different threads.

§6.6.1 Barrier statements 35

http://code.google.com/p/upc-specification/issues/detail?id=64
http://code.google.com/p/upc-specification/issues/detail?id=64

UPC Language Specifications Version 1.3 Draft 4

implementation-defined manner if either of the following two rules are vio-
lated: 27 1) All optional expressions provided to upc_notify must have equal
values (a consensus). 2) Any optional expression provided to upc_wait must
equal the consensus value from the upc_notify. If no thread provides an
optional expression to upc_notify, then no interruption shall be generated.
The upc_wait statement shall interrupt the execution of the program in an
implementation defined manner if the value of its expression differs from the
value of the expression on the upc_notify statement issued by any thread
in the current synchronization phase. After such an interruption, subsequent
behavior is undefined. No "difference" exists if either statement is missing
this optional expression. liii

8 The upc_barrier statement is equivalent to the compound statement28:

{ upc_notify barrier_value; upc_wait barrier_value; }

where barrier_value is the result of evaluating expression if present, oth-
erwise omitted.

9 The barrier operations at thread startup and termination have a value of
expression which is not in the range of the type int.29

10 EXAMPLE 1: The following will result in a runtime error:

{ upc_notify; upc_barrier; upc_wait; }

as it is equivalent to

{ upc_notify; upc_notify; upc_wait; upc_wait; }

6.6.2 Iteration statements

1 This subsection provides the UPC parallel extensions of [ISO/IEC00 Sec.
6.8.5].

27After such an interruption, subsequent behavior is undefined.
liiiIssue #51: clarification: revise text to eliminate an ambiguity in barrier matching

semantics
28This equivalence is explicit with respect to matching expressions in semantic 7 and

collective status in semantic 3.
29These barriers are never expressed in a UPC source program and this semantic says

these barrier values can never match one expressed in a user program.

36 Iteration statements §6.6.2

http://code.google.com/p/upc-specification/issues/detail?id=51
http://code.google.com/p/upc-specification/issues/detail?id=51

UPC Language Specifications Version 1.3 Draft 4

Syntax

2 iteration-statement:

while (expression) statement

do statement while (expression) ;

for (expression𝑜𝑝𝑡; expression𝑜𝑝𝑡; expression𝑜𝑝𝑡) statement

for (declaration expression𝑜𝑝𝑡; expression𝑜𝑝𝑡) statement

upc_forall (expression𝑜𝑝𝑡; expression𝑜𝑝𝑡; expression𝑜𝑝𝑡; affinity𝑜𝑝𝑡)
statement

upc_forall (declaration expression𝑜𝑝𝑡; expression𝑜𝑝𝑡;
affinity𝑜𝑝𝑡) statement

3 affinity:

expression

continue

Constraints:

4 The expression for affinity shall have pointer-to-shared type or integer type.

Semantics:

5 upc_forall is a collective operation in which, for each execution of the loop
body, the controlling expression and affinity expression are single-valued.30

6 The affinity field specifies the executions of the loop body which are to be
performed by a thread.

7 When affinity is of pointer-to-shared type, the loop body of the upc_forall
statement is executed for each iteration in which the value of MYTHREAD equals
the value of upc_threadof(affinity). Each iteration of the loop body is
executed by precisely one thread.

8 When affinity is an integer expression, the loop body of the upc_forall
statement is executed for each iteration in which the value of MYTHREAD equals
the value affinity mod THREADS. If the value of affinity is negative, behavior

30Note that single-valued implies that all thread agree on the total number of iterations,
their sequence, and which threads execute each iteration.

§6.6.2 Iteration statements 37

UPC Language Specifications Version 1.3 Draft 4

is undefined.liv

9 When affinity is continue or not specified, each loop body of the upc_forall
statement is performed by every thread and semantic 51lvdoes not apply.

10 If the loop body of a upc_forall statement contains one or more upc_forall
statements, either directly or through one or more function calls, the con-
struct is called a nested upc_forall statement. In a nested upc_forall, the
outermost upc_forall statement that has an affinity expression which is
not continue is called the controlling upc_forall statement. All upc_forall
statements which are not controlling in a nested upc_forall behave as if their
affinity expressions were continue. Nesting of upc_forall statements is
considered an obsolescent feature, and may be prohibited in a future revision
of this specification. lvi

11 Every thread evaluates the first three clauses of a upc_forall statement
in accordance with the semantics of the corresponding clauses for the for
statement, as defined in [ISO/IEC00 Sec. 6.8.5.3]. Every thread evaluates
the fourth clause of every iteration.

12 If the execution of any loop body of a upc_forall statement produces a
side-effect which affects the execution of another loop body of the same
upc_forall statement which is executed by a different thread31, the be-
havior is undefined.

13 If any thread terminates or executes a collective operation within the dy-
namic scope of a upc_forall statement, the result is undefined. If any
thread terminates a upc_forall statement using a break, goto , or return
statement, or the longjmp function, the result is undefined. If any thread en-
ters the body of a upc_forall statement using a goto statement, the result
is undefined.32

14 EXAMPLE 1: Nested upc_forall:

livIssue #59: The affinity test on integer values in a upc_forall statement is undefined
for negative values

lvIssue #55: Miscellaneous specification document typographical errors
lviIssue #88: Nested upc_forall semantics
31This semantic implies that side effects on the same thread have defined behavior, just

like in the for statement.
32The continue statement behaves as defined in [ISO/IEC00 Sec. 6.8.6.2]; equivalent

to a goto the end of the loop body.

38 Iteration statements §6.6.2

http://code.google.com/p/upc-specification/issues/detail?id=59
http://code.google.com/p/upc-specification/issues/detail?id=59
http://code.google.com/p/upc-specification/issues/detail?id=55
http://code.google.com/p/upc-specification/issues/detail?id=88

UPC Language Specifications Version 1.3 Draft 4

main () {
int i,j,k;
shared float *a, *b, *c;

upc_forall(i=0; i<N; i++; continue)
upc_forall(j=0; j<N; j++; &a[j])

upc_forall (k=0; k<N; k++; &b[k])
a[j] = b[k] * c[i];

}

This example executes all iterations of the “i” and “k” loops on every thread,
and executes iterations of the “j” loop on those threads where upc_threadof
(&a[j]) equals the value of MYTHREAD.

15 EXAMPLE 2: Evaluation of upc_forall arguments:

int i;
upc_forall((foo1(), i=0); (foo2(), i<10); (foo3(), i++); i) {

foo4(i);
}

Each thread evaluates foo1() exactly once, before any further action on that
thread. Each thread will execute foo2() and foo3() in alternating sequence, 10
times on each thread, followed by a final call to foo2() on each thread before
the loop terminates.lviiAssuming there is no enclosing upc_forall loop, foo4()
will be evaluated exactly 10 times total before the last thread exits the loop,
once with each of i=0..9. Evaluations of foo4() may occur on different threads
(as determined by the affinity clause) with no implied synchronization or
serialization between foo4() evaluations or controlling expressions on different
threads. The final value of i is 10 on all threads.

6.7 Preprocessing directives

1 This subsection provides the UPC parallel extensions of [ISO/IEC00 Sec.
6.10].

lviiIssue #29: Correct example 2 in the UPC specification in the discussion of upc_forall

§6.7 Preprocessing directives 39

http://code.google.com/p/upc-specification/issues/detail?id=29
http://code.google.com/p/upc-specification/issues/detail?id=29

UPC Language Specifications Version 1.3 Draft 4

6.7.1 UPC pragmas

Semantics

1 If the preprocessing token upc immediately follows the pragma, then no macro
replacement is performed and the directive shall have one of the following
forms:

#pragma upc strict

#pragma upc relaxed

2 These pragmas affect the strict or relaxed categorization of shared accesses
where the referenced type is neither strict-qualified nor relaxed-qualified.
Such accesses shall be strict if a strict pragma is in effect, or relaxed if a
relaxed pragma is in effect.

3 Each translation unit has an implicit #pragma upc relaxed before the first
line. Shared accesses which are not categorized by either referenced type
or by these pragmas behave in an implementation defined manner in which
either all such accesses are strict or all are relaxed. Users wishing portable
programs are strongly encouraged to categorize all shared accesses either by
using type qualifiers, these directives, or by including <upc_strict.h> or
<upc_relaxed.h>. lviii

4 The pragmas shall occur either outside external declarations or preceding all
explicit declarations and statements inside a compound statement. When
they are outside external declarations, they apply until another such pragma
or the end of the translation unit. When inside a compound statement,
they apply until the end of the compound statement; at the end of the
compound statement the state of the pragmas is restored to that preceding
the compound statement. If these pragmas are used in any other context,
their behavior is undefined.

lviiiIssue #83: Strengthen the "default" pragma from "implementation-defined" to "re-
laxed"

40 UPC pragmas §6.7.1

http://code.google.com/p/upc-specification/issues/detail?id=83
http://code.google.com/p/upc-specification/issues/detail?id=83

UPC Language Specifications Version 1.3 Draft 4

6.7.2 Predefined macro names

1 The following macro names shall be defined by the implementation33

__UPC__ The integer constant 1, indicating a conforming implementation.

__UPC_VERSION__ The integer constant 201309L200505Llix.

UPC_MAX_BLOCK_SIZE The integer constant as defined in section 6.3.3.

2 The following macro names are conditionally defined by the implementation:

__UPC_DYNAMIC_THREADS__ The integer constant 1 in the dynamic THREADS
translation environment, otherwise undefined.

__UPC_STATIC_THREADS__ The integer constant 1 in the static THREADS
translation environment, otherwise undefined.

THREADS The integer constant as defined in section 6.3.1 in the static
THREADS translation environment.

33In addition to these macro names, the semantics of [ISO/IEC00 Sec. 6.10.8] apply to
the identifier MYTHREAD.

lixIssue #105: Update the predefined macro "__UPC_VERSION__" for 1.3

§6.7.2 Predefined macro names 41

http://code.google.com/p/upc-specification/issues/detail?id=105

UPC Language Specifications Version 1.3 Draft 4

7 Library

7.1 Standard headers

1 This subsection provides the UPC parallel extensions of [ISO/IEC00 Sec
7.1.2].

2 The standard headers are

<upc_strict.h>
<upc_relaxed.h>
<upc.h>
<upc_types.h>

3 Every inclusion of <upc_strict.h> asserts the upc strict pragma and has
the effect of including <upc.h>.

4 Every inclusion of <upc_relaxed.h> asserts the upc relaxed pragma and has
the effect of including <upc.h>.

5 Every inclusion of <upc.h> has the effect of including <upc_types.h>. lx

6 By convention, all UPC standard library functions are named using the prefix
upc_. Those which are collective have prefix upc_all_.

lxIssue #10: Add upc_types.h to define common library types

42 Library §7

http://code.google.com/p/upc-specification/issues/detail?id=10

UPC Language Specifications Version 1.3 Draft 4

7.2 UPC utilities <upc.h>

1 This subsection provides the UPC parallel extensions of [ISO/IEC00 Sec
7.20]. All of the characteristics of library functions described in [ISO/IEC00
Sec 7.1.4] apply to these as well.

2 Unless otherwise noted, all of the functions, types and macros specified in
Section 7.2 are declared by the header <upc.h>. lxi

7.2.1 Termination of all threads

Synopsis

1 #include <upc.h>
void upc_global_exit(int status);

Description

2 upc_global_exit() flushes all I/O, releases all storage, and terminates the
execution for all active threads.

7.2.2 Shared memory allocation functions

1 The UPC memory allocation functions return, if successful, a pointer-to-
shared which is suitably aligned so that it may be assigned to a pointer-to-
shared of any type. The pointer has zero phase and points to the start of the
allocated space. If the space cannot be allocated, a null pointer-to-shared is
returned.

2 There is no required correspondence between the functions specified in Sec-
tion 7.2.2 to allocate and free objects. Either of the upc_free or upc_all_free
functions may be used to free shared space allocated using upc_all_alloc,
upc_global_alloc or upc_alloc. lxii

7.2.2.1 The upc_global_alloc function

Synopsis

lxiIssue #91: Library section boilerplate spec text
lxiiIssue #12: Library: Collective Deallocation Functions

§7.2 UPC utilities <upc.h> 43

http://code.google.com/p/upc-specification/issues/detail?id=91
http://code.google.com/p/upc-specification/issues/detail?id=12

UPC Language Specifications Version 1.3 Draft 4

1 #include <upc.h>
shared void *upc_global_alloc(size_t nblocks, size_t nbytes);

Description

2 The upc_global_alloc allocates shared space compatible with the declara-
tion:

shared [nbytes] char[nblocks * nbytes].

3 The upc_global_alloc function is not a collective function. If called by
multiple threads, all threads which make the call get different allocations. If
nblocks*nbytes is zero, the result is a null pointer-to-shared.

7.2.2.2 The upc_all_alloc function

Synopsis

1 #include <upc.h>
shared void *upc_all_alloc(size_t nblocks, size_t nbytes);

Description

2 upc_all_alloc is a collective function with single-valued arguments.

3 The upc_all_alloc function allocates shared space compatible with the fol-
lowing declaration:

shared [nbytes] char[nblocks * nbytes].

4 The upc_all_alloc function returns the same pointer value on all threads.
If nblocks*nbytes is zero, the result is a null pointer-to-shared.

5 The dynamic lifetime of an allocated object extends from the time any thread
completes the call to upc_all_alloc until any thread has deallocated the
object.

7.2.2.3 The upc_alloc function

Synopsis

1 #include <upc.h>
shared void *upc_alloc(size_t nbytes);

Description

2 The upc_alloc function allocates shared space of at least nbytes bytes with
affinity to the calling thread.

44 The upc_all_alloc function §7.2.2.2

UPC Language Specifications Version 1.3 Draft 4

3 upc_alloc is similar to malloc() except that it returns a pointer-to-shared
value. It is not a collective function. If nbytes is zero, the result is a null
pointer-to-shared.

SECTION REMOVED: The upc_local_alloc function deprecatedlxiii

7.2.2.4 The upc_free function

Synopsis

1 #include <upc.h>
void upc_free(shared void *ptr);

Description

2 The upc_free function frees the dynamically allocated shared storage pointed
to by ptr. If ptr is a null pointer, no action occurs. Otherwise, if the
argument does not match a pointer earlier returned by the upc_alloc,
upc_local_alloc, lxivupc_global_alloc or upc_all_alloc functions, or
if the space has been deallocated by a previous call to upc_free by any
thread,34 or a previous call to upc_all_freelxv, the behavior is undefined.

7.2.2.5 The upc_all_free function

SECTION ADDEDlxvi

Synopsis

1 #include <upc.h>
void upc_all_free(shared void *ptr);

Description

2 upc_all_free is a collective variant of upc_free, provided as a convenience.
It must be called collectively by all threads with the single-valued argument
ptr.

3 The upc_all_free function frees the dynamically allocated shared storage
pointed to by ptr. If ptr is a null pointer, no action occurs. Otherwise, if
the argument does not match a pointer earlier returned by the upc_alloc,

lxiiiIssue #82: Remove the deprecated upc_local_alloc function
lxivIssue #82: Remove the deprecated upc_local_alloc function

34i.e., only one thread may call upc_free for each allocation
lxvIssue #12: Library: Collective Deallocation Functions

lxviIssue #12: Library: Collective Deallocation Functions

§7.2.2.4 The upc_free function 45

http://code.google.com/p/upc-specification/issues/detail?id=82
http://code.google.com/p/upc-specification/issues/detail?id=82
http://code.google.com/p/upc-specification/issues/detail?id=12
http://code.google.com/p/upc-specification/issues/detail?id=12

UPC Language Specifications Version 1.3 Draft 4

upc_global_alloc, or upc_all_alloc functions, or if the space has been
deallocated by a previous call to upc_free or upc_all_free, the behavior
is undefined.

4 The shared storage referenced by ptr is guaranteed to remain valid until all
threads have entered the call to upc_all_free, but the function does not
otherwise guarantee any synchronization or strict reference.

7.2.3 Pointer-to-shared manipulation functions

7.2.3.1 The upc_threadof function

Synopsis

1 #include <upc.h>
size_t upc_threadof(shared void *ptr);

Description

2 The upc_threadof function returns the index of the thread that has affinity
to the shared object pointed to by ptr.35

3 If ptr is a null pointer-to-shared, the function returns 0.

7.2.3.2 The upc_phaseof function

Synopsis

1 #include <upc.h>
size_t upc_phaseof(shared void *ptr);

Description

2 The upc_phaseof function returns the phase component of the pointer-to-
shared argument.36

3 If ptr is a null pointer-to-shared, the function returns 0.

35This function is used in defining the semantics of pointer-to-shared arithmetic in Sec-
tion 6.4.2

36This function is used in defining the semantics of pointer-to-shared arithmetic in Sec-
tion 6.4.2

46 Pointer-to-shared manipulation functions §7.2.3

UPC Language Specifications Version 1.3 Draft 4

7.2.3.3 The upc_resetphase function

Synopsis

1 #include <upc.h>
shared void *upc_resetphase(shared void *ptr);

Description

2 The upc_resetphase function returns a pointer-to-shared which is identical
to its input except that it has zero phase.

7.2.3.4 The upc_addrfield function

Synopsis

1 #include <upc.h>
size_t upc_addrfield(shared void *ptr);

Description

2 The upc_addrfield function returns an implementation-defined value re-
flecting the “local address” of the object pointed to by the pointer-to-shared
argument.

3 Given the following declarations:

T *P1, *P2; /* T is not a shared type */
shared T *S1, *S2;

P1 = (T*) S1; /* allowed if upc_threadof(S1) == MYTHREAD */
P2 = (T*) S2; /* allowed if upc_threadof(S2) == MYTHREAD */

For all S1 and S2 that point to two distinct elements of the same shared
array object which have affinity to the same thread, the expression:
((ptrdiff_t) upc_addrfield(S2) - (ptrdiff_t)upc_addrfield(S1))
shall evaluate to the same value as: ((P2 - P1) * sizeof(T)).

Paragraph moved from 6.4.2 and cross-reference footnote removed.lxvii

7.2.3.5 The upc_affinitysize function

Synopsis

1 #include <upc.h>

lxviiIssue #106: Clarify contiguity of local slice of a shared array

§7.2.3.3 The upc_resetphase function 47

http://code.google.com/p/upc-specification/issues/detail?id=106

UPC Language Specifications Version 1.3 Draft 4

size_t upc_affinitysize(size_t totalsize, size_t nbytes,
size_t threadid);

Description

2 upc_affinitysize is a convenience function which calculates the exact size
of the local portion of the data in a shared object with affinity to threadid.

3 In the case of a dynamically allocated shared object, the totalsize argu-
ment shall be nbytes*nblocks and the nbytes argument shall be nbytes,
where nblocks and nbytes are exactly as passed to upc_global_alloc or
upc_all_alloc when the object was allocated.

4 In the case of a statically allocated shared object with declaration:

shared [b] t d[s];

the totalsize argument shall be s * sizeof (t) and the nbytes argu-
ment shall be b * upc_elemsizeof (d)sizeof (t)lxviii. If the block size is
indefinite, nbytes shall be 0.

5 threadid shall be a value in 0..(THREADS-1).

7.2.4 Lock functions

7.2.4.1 Type

1 The type declared is

upc_lock_t

2 The type upc_lock_t is an opaque UPC type. upc_lock_t is a shared
datatype with incomplete type (as defined in [ISO/IEC00 Sec 6.2.5]). Objects
of type upc_lock_t may therefore only be manipulated through pointers.
Such objects have two states called locked and unlocked.

3 Two pointers to upc_lock_t that reference the same lock object will compare
as equal. The results of applying upc_phaseof(), upc_threadof(), and
upc_addrfield() to such pointers are undefined.

4 There is no required correspondence between the functions specified in Sec-
tion 7.2.4 to allocate and free locks. Either of the upc_lock_free or upc_all_lock_free

lxviiiIssue #3: Clarifying pointers to shared arrays, and multi-D shared arrays

48 Lock functions §7.2.4

http://code.google.com/p/upc-specification/issues/detail?id=3

UPC Language Specifications Version 1.3 Draft 4

functions may be used to free locks allocated using upc_global_lock_alloc
or upc_all_lock_alloc. lxix

7.2.4.2 The upc_global_lock_alloc function

Synopsis

1 #include <upc.h>
upc_lock_t *upc_global_lock_alloc(void);

Description

2 The upc_global_lock_alloc function dynamically allocates a lock and re-
turns a pointer to it. The lock is created in an unlocked state.

3 The upc_global_lock_alloc function is not a collective function. If called
by multiple threads, all threads which make the call get different allocations.

7.2.4.3 The upc_all_lock_alloc function

Synopsis

1 #include <upc.h>
upc_lock_t *upc_all_lock_alloc(void);

Description

2 The upc_all_lock_alloc function dynamically allocates a lock and returns
a pointer to it. The lock is created in an unlocked state.

3 The upc_all_lock_alloc is a collective function. The return value on every
thread points to the same lock object.

7.2.4.4 The upc_lock_free function

Synopsis

1 #include <upc.h>
void upc_lock_free(upc_lock_t *ptr);

Description

2 The upc_lock_free function frees all resources associated with the dynam-
ically allocated upc_lock_t pointed to by ptr. If ptr is a null pointer, no
action occurs. Otherwise, if the argument does not match a pointer earlier

lxixIssue #12: Library: Collective Deallocation Functions

§7.2.4.2 The upc_global_lock_alloc function 49

http://code.google.com/p/upc-specification/issues/detail?id=12

UPC Language Specifications Version 1.3 Draft 4

returned by the upc_global_lock_alloc or upc_all_lock_alloc function,
or if the lock has been deallocated by a previous call to upc_lock_free by
any thread, 37 or a previous call to upc_all_lock_free,lxxthe behavior is
undefined.

3 upc_lock_free succeeds regardless of whether the referenced lock is cur-
rently unlocked or currently locked (by any thread).

4 Subsequent or concurrent calls from any thread to functions defined in Sec-
tion 7.2.4 using the lock referenced by ptr have undefined behavior. This
also applies to any call to upc_lock on the the lock referenced by ptr which
is blocked at the time of the call to upc_lock_free. Any subsequent calls
to locking functions from any thread using ptr have undefined effects. This
also applies to any thread currently calling upc_lock. lxxi

7.2.4.5 The upc_all_lock_free function

SECTION ADDEDlxxii

Synopsis

1 #include <upc.h>
void upc_all_lock_free(upc_lock_t *ptr);

Description

2 upc_all_lock_free is a collective variant of upc_lock_free, provided as a
convenience. It must be called collectively by all threads with the single-
valued argument ptr.

3 The upc_all_lock_free function frees all resources associated with the dy-
namically allocated upc_lock_t pointed to by ptr. If ptr is a null pointer,
no action occurs. Otherwise, if the argument does not match a pointer earlier
returned by the upc_global_lock_alloc or upc_all_lock_alloc function,
or if the lock has been deallocated by a previous call to upc_lock_free or
upc_all_lock_free, the behavior is undefined.

4 upc_all_lock_free succeeds regardless of whether the referenced lock is
currently unlocked or currently locked (by any thread).

37i.e., only one thread may call upc_lock_free for each allocation
lxxIssue #12: Library: Collective Deallocation Functions

lxxiIssue #49: clarification: unlock of freed lock
lxxiiIssue #12: Library: Collective Deallocation Functions

50 The upc_all_lock_free function §7.2.4.5

http://code.google.com/p/upc-specification/issues/detail?id=12
http://code.google.com/p/upc-specification/issues/detail?id=49
http://code.google.com/p/upc-specification/issues/detail?id=12

UPC Language Specifications Version 1.3 Draft 4

5 The lock referenced by ptr is guaranteed to remain valid until all threads have
entered the call to upc_all_lock_free, but the function does not otherwise
guarantee any synchronization or strict reference.

6 Any subsequent calls from any thread to functions defined in Section 7.2.4
using the lock referenced by ptr have undefined behavior.

7.2.4.6 The upc_lock function

Synopsis

1 #include <upc.h>
void upc_lock(upc_lock_t *ptr);

Description

2 The upc_lock function sets the state of the lock pointed to by ptr to locked.

3 If the lock is already in locked state due to the calling thread setting it to
locked state, the result is undefined.

4 If the lock is already in locked state, then the calling thread waits for some
other thread to set the state to unlocked.38

5 Once the lock is in state unlocked, a single calling thread sets the state to
locked and the function returns.

6 A null strict access is implied after a call to upc_lock().

7.2.4.7 The upc_lock_attempt function

Synopsis

1 #include <upc.h>
int upc_lock_attempt(upc_lock_t *ptr);

Description

2 The upc_lock_attempt function attempts to set the state of the lock pointed
to by ptr to locked.

3 If the lock is already in locked state due to the calling thread setting it to
locked state, the result is undefined.

38If no other thread calls upc_unlock on ptr the calling thread will never return from
this function.

§7.2.4.6 The upc_lock function 51

UPC Language Specifications Version 1.3 Draft 4

4 If the lock is already in locked state the function returns 0.

5 If the lock is in state unlocked, a single calling thread sets the state to locked
and the function returns 1.

6 A null strict access is implied after a call to upc_lock_attempt() that returns
1.

7.2.4.8 The upc_unlock function

Synopsis

1 #include <upc.h>
void upc_unlock(upc_lock_t *ptr);

Description

2 The upc_unlock function sets the state of the lock pointed to by ptr to
unlocked.

3 Unless the lock is in locked state and the calling thread is the locking thread,
the result is undefined.

4 A null strict access is implied before a call to upc_unlock().

7.2.5 Shared string handling functions

7.2.5.1 The upc_memcpy function

Synopsis

1 #include <upc.h>
void upc_memcpy(shared void * restrict dst,

shared const void * restrict src, size_t n);

Description

2 The upc_memcpy function copies n characters from a shared object having
affinity with one thread to a shared object having affinity with the same or
another thread.

3 The upc_memcpy function treats the dst and src pointers as if they had
type:

shared [] char[n]

52 The upc_unlock function §7.2.4.8

UPC Language Specifications Version 1.3 Draft 4

The effect is equivalent to copying the entire contents from one shared array
object with this type (the src array) to another shared array object with
this type (the dst array).

4 If copying takes place between objects that overlap, the behavior is undefined.
lxxiii

7.2.5.2 The upc_memget function

Synopsis

1 #include <upc.h>
void upc_memget(void * restrict dst,

shared const void * restrict src, size_t n);

Description

2 The upc_memget function copies n characters from a shared object with affin-
ity to any single thread to an object on the calling thread.

3 The upc_memget function treats the src pointer as if it had type:

shared [] char[n]

The effect is equivalent to copying the entire contents from one shared array
object with this type (the src array) to an array object (the dst array)
declared with the type

char[n]

4 If copying takes place between objects that overlap, the behavior is undefined.
lxxiv

7.2.5.3 The upc_memput function

Synopsis

1 #include <upc.h>
void upc_memput(shared void * restrict dst,

const void * restrict src, size_t n);

Description
lxxiiiIssue #50: clarification: overlapping memory copies undefined by presence of "restrict"
keyword
lxxivIssue #50: clarification: overlapping memory copies undefined by presence of "restrict"
keyword

§7.2.5.2 The upc_memget function 53

http://code.google.com/p/upc-specification/issues/detail?id=50
http://code.google.com/p/upc-specification/issues/detail?id=50
http://code.google.com/p/upc-specification/issues/detail?id=50
http://code.google.com/p/upc-specification/issues/detail?id=50

UPC Language Specifications Version 1.3 Draft 4

2 The upc_memput function copies n characters from an object on the calling
thread to a shared object with affinity to any single thread.

3 The upc_memput function is equivalent to copying the entire contents from
an array object (the src array) declared with the type

char[n]

to a shared array object (the dst array) with the type

shared [] char[n]

4 If copying takes place between objects that overlap, the behavior is undefined.
lxxv

7.2.5.4 The upc_memset function

Synopsis

1 #include <upc.h>
void upc_memset(shared void *dst, int c, size_t n);

Description

2 The upc_memset function copies the value of c, converted to an unsigned
char, to a shared object with affinity to any single thread. The number of
bytes set is n.

3 The upc_memset function treats the dst pointer as if had type:

shared [] char[n]

The effect is equivalent to setting the entire contents of a shared array object
with this type (the dst array) to the value c.

lxxvIssue #50: clarification: overlapping memory copies undefined by presence of "restrict"
keyword

54 The upc_memset function §7.2.5.4

http://code.google.com/p/upc-specification/issues/detail?id=50
http://code.google.com/p/upc-specification/issues/detail?id=50

UPC Language Specifications Version 1.3 Draft 4

7.3 UPC standard types <upc_types.h>

SECTION ADDEDlxxvi

1 The <upc_types.h> header declares several standard types and value macros
used by other UPC libraries.

2 Unless otherwise noted, all of the types and macros specified in Section 7.3
are declared by the header <upc_types.h>.

3 The <upc_types.h> header shall constitute a strictly-conforming transla-
tion unit for an [ISO/IEC00] C compiler (ie one that lacks UPC language
extensions).

7.3.1 Operation designator (upc_op_t)

1 The <upc_types.h> header defines the type:

upc_op_t

which is an integer type whose values are used to designate a library operation
or set of operations.

2 The <upc_types.h> header defines the following macros, which expand to
integer constant expressions with type upc_op_t, which are suitable for use
in #if preprocessing directives. Each macro value designates the specified
operation. The expressions are defined such that bitwise or (|) of all com-
binations of the macros result in distinct positive values less than 65536.

Macro name Specified operation
UPC_ADD Addition
UPC_MULT Multiplication
UPC_AND Bitwise and (&)
UPC_OR Bitwise inclusive or (|)
UPC_XOR Bitwise exclusive or (∧)
UPC_LOGAND Logical and (&&)
UPC_LOGOR Logical or (||)
UPC_MIN Minimum value (op1<op2?op1:op2)
UPC_MAX Maximum value (op1>op2?op1:op2)

lxxviIssue #10: Add upc_types.h to define common library types

§7.3 UPC standard types <upc_types.h> 55

http://code.google.com/p/upc-specification/issues/detail?id=10

UPC Language Specifications Version 1.3 Draft 4

3 Extension libraries may define additional value macros of type upc_op_t, but
their values shall not conflict with those defined in <upc_types.h>.

7.3.2 Type designator (upc_type_t)

1 The <upc_types.h> header defines the type:

upc_type_t

which is an integer type whose values are used to designate a language type.

2 The <upc_types.h> header defines the following macros, which expand to
integer constant expressions with type upc_type_t, distinct positive values
less than 65536, and which are suitable for use in #if preprocessing directives.
Each macro value designates the specified type.

Macro name Specified type
UPC_CHAR char
UPC_UCHAR unsigned char
UPC_SHORT short
UPC_USHORT unsigned short
UPC_INT int
UPC_UINT unsigned int
UPC_LONG long
UPC_ULONG unsigned long
UPC_LLONG long long
UPC_ULLONG unsigned long long
UPC_INT8 int8_t
UPC_UINT8 uint8_t
UPC_INT16 int16_t
UPC_UINT16 uint16_t
UPC_INT32 int32_t
UPC_UINT32 uint32_t
UPC_INT64 int64_t
UPC_UINT64 uint64_t
UPC_FLOAT float
UPC_DOUBLE double
UPC_LDOUBLE long double
UPC_PTS shared void *

56 Type designator (upc_type_t) §7.3.2

UPC Language Specifications Version 1.3 Draft 4

3 Extension libraries may define additional value macros of type upc_type_t,
but their values shall not conflict with those defined in <upc_types.h>.

7.3.3 Synchronization flags (upc_flag_t)

1 The <upc_types.h> header defines the type:

upc_flag_t

which is an integer type.

2 The following macros are defined in <upc_types.h>:

UPC_OUT_ALLSYNC
UPC_OUT_MYSYNC
UPC_OUT_NOSYNC
UPC_IN_ALLSYNC
UPC_IN_MYSYNC
UPC_IN_NOSYNC

All expand to integer constant expressions with type upc_flag_t which are
suitable for use in #if preprocessing directives. The expressions are defined
such that bitwise or (|) of all combinations of the macros result in distinct
positive values less than 64.

3 The semantics of these macros are defined in Section 7.3.4.

7.3.4 Memory Semantics of Library Functions

1 upc_flag_t is an integral type defined in <upc_types.h> which is used to
control the data synchronization semantics of certain collective UPC library
functions. Values of function arguments having type upc_flag_t are formed
by or-ing together a constant of the form UPC_IN_XSYNC and a constant of
the form UPC_OUT_YSYNC, where X and Y may be NO, MY, or ALL.

2 If an argument of type upc_flag_t has value (UPC_IN_XSYNC | UPC_OUT_YSYNC),
then if X is

NO the function may begin to read or write data when the first thread has
entered the collective function call,

MY the function may begin to read or write only data which has affinity to

§7.3.3 Synchronization flags (upc_flag_t) 57

UPC Language Specifications Version 1.3 Draft 4

threads that have entered the collective function call, and

ALL the function may begin to read or write data only after all threads have
entered the function call39

3 and if Y is

NO the function may read and write data until the last thread has returned
from the collective function call,

MY the function call may return in a thread only after all reads and writes of
data with affinity to the thread are complete40, and

ALL the function call may return only after all reads and writes of data are
complete.41

4 Passing UPC_IN_XSYNC alone has the same effect as (UPC_IN_XSYNC | UPC_OUT_ALLSYNC),
passing UPC_OUT_XSYNC alone has the same effect as (UPC_IN_ALLSYNC | UPC_OUT_XSYNC),
and passing 0 has the same effect as (UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC),
where X is NO, MY, or ALL.

39UPC_IN_ALLSYNC requires the function to guarantee that after all threads have entered
the function call all threads will read the same values of the input data.

40UPC_OUT_MYSYNC requires the function to guarantee that after a thread returns from
the function call the thread will not read any earlier values of the output data with affinity
to that thread.

41UPC_OUT_ALLSYNC requires the collective function to guarantee that after a thread
returns from the function call the thread will not read any earlier values of the output
data.

UPC_OUT_ALLSYNC is not required to provide an “implied" barrier. For example, if the
entire operation has been completed by a certain thread before some other threads have
reached their corresponding function calls, then that thread may exit its call.

58 Memory Semantics of Library Functions §7.3.4

UPC Language Specifications Version 1.3 Draft 4

A Additions and Extensions

UPDATED TO REFLECT NEW DOCUMENT ORGANIZATIONlxxvii

1 The UPC additions and extensions specification is divided into required
[UPC-LIB-REQ] and optional [UPC-LIB-OPT] library specifications. Re-
quired extensions shall be provided by a conformant UPC implementation,
while a conformant UPC implementation is not required to provide optional
extensions. The optional extensions specifications contains proposed addi-
tions and extensions to the UPC specification. Such proposals are included
when stable enough for developers to implement and for users to study and
experiment with them. However, their presence does not suggest long term
support. When fully stable and tested, they will be moved to the required
extensions specification.

2 This section also describes the process used to add new items to the addi-
tions and extensions specification, which starts with inclusion in the optional
extensions specification. Requirements for inclusion are:42

1. A documented API which shall use the format and conventions of this
specification and [ISO/IEC00].

2. Either a complete, publicly available, implementation of the API or
a set of publicly available example programs which demonstrate the
interface.

3. The concurrence of the UPC consortium that its inclusion would be in
the best interest of the language.

3 If all implementations drop support for an extension and/or all interested
parties no longer believe the extension is worth pursuing, then it may simply
be dropped. Otherwise, the requirements for inclusion of an extension in the
required extensions specification are:

1. Six months residence in the optional extensions specification.

lxxviiIssue #54: Write section "Proposed Additions and Extensions"
42These requirements ensure that most of the semantic issues that arise during initial

implementation have been addressed and prevents the accumulation of interfaces that no
one commits to implement. Nothing prevents the circulation of more informal what if
interface proposals from circulating in the community before an extension reaches this
point.

§A Additions and Extensions 59

http://code.google.com/p/upc-specification/issues/detail?id=54

UPC Language Specifications Version 1.3 Draft 4

2. The existence of either one (or more) publicly available "reference" im-
plementation written in standard UPC OR at least two independent
implementations (possibly specific to a given UPC implementation).

3. The existence of a significant base of experimental user experience
which demonstrates positive results with a substantial portion of the
proposed API.

4. The concurrence of the UPC consortium that its inclusion would be in
the best interest of the language.

4 For each extension, there shall be a predefined feature macro beginning with
__UPC which will be defined by an implementation to be the interface version
of the extension if it is supported, otherwise undefined.

5 For each library extension, a separate header file whose name begins with
upc_ shall be specified. This header file shall be provided by an implemen-
tation if the extension is supported.

60 Additions and Extensions §A

UPC Language Specifications Version 1.3 Draft 4

B Formal UPC Memory Consistency Seman-
tics

1 The memory consistency model in a language defines the order in which the
results of write operations may be observed through read operations. The
behavior of a UPC program may depend on the timing of accesses to shared
variables, so in general a program defines a set of possible executions, rather
than a single execution. The memory consistency model constrains the set of
possible executions for a given program; the user may then rely on properties
that are true of all of those executions.

2 The memory consistency model is defined in terms of the read and write
operations issued by each thread in a naïve translation of the program, i.e.,
without any program transformations during translation, where each thread
issues operations as defined by the abstract machine defined in [ISO/IEC00
Sec. 5.1.2.3]. [ISO/IEC00 Sec. 5.1.2.3] allows a UPC implementation to
perform various program transformations to improve performance, provided
they are not visible to the programmer - specifically, provided those transfor-
mations do not affect the external behavior of the program. UPC extends this
constraint, requiring the set of externally-visible behaviors (the input/output
dynamics and volatile behavior defined in [ISO/IEC00 Sec. 5.1.2.3]) from
any execution of the transformed program be indistinguishable from those of
the original program executing on the abstract machine and adhering to the
memory consistency model as defined in this appendix.

3 This appendix assumes some familiarity with memory consistency models,
partial orders, and basic set theory.

B.1 Definitions

1 A UPC program execution is specified by a program text and a number of
threads, 𝑇 . An execution is a set of operations 𝑂, each operation being an
instance of some instruction in the program text. The set of operations issued
by a thread 𝑡 is denoted 𝑂𝑡. The program executes memory operations on a
set of variables (or locations) 𝐿. The set 𝑉 is the set of possible values that
can be stored in the program variables.

§B Formal UPC Memory Consistency Semantics 61

UPC Language Specifications Version 1.3 Draft 4

2 A memory operation in such an execution is given by a location 𝑙 ∈ 𝐿 to be
written or read and a value 𝑣 ∈ 𝑉 , which is the value to be written or the
value returned by the read. A memory operation 𝑚 in a UPC program has
one of the following forms, as defined in Section 3.7:

∙ a strict shared read, denoted SR(l,v)

∙ a strict shared write, denoted SW(l,v)

∙ a relaxed shared read, denoted RR(l,v)

∙ a relaxed shared write, denoted RW(l,v)

∙ a local read, denoted LR(l,v)

∙ a local write, denoted LW(l,v)

3 In addition, each memory operation 𝑚 is associated with exactly one of the
𝑇 threads, denoted 𝑇ℎ𝑟𝑒𝑎𝑑(𝑚), and the accessor 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑚) is defined to
return the location 𝑙 accessed by 𝑚.

4 Given a UPC program execution with 𝑇 threads, let 𝑀 ⊆ 𝑂 be the set of
memory operations in the execution and 𝑀𝑡 be the set of memory operations
issued by a given thread 𝑡. Each operation in 𝑀 is one of the above six types,
so the set 𝑀 is partitioned into the following six disjoint subsets:

∙ 𝑆𝑅(𝑀) is the set of strict shared reads in 𝑀

∙ 𝑆𝑊 (𝑀) is the set of strict shared writes in 𝑀

∙ 𝑅𝑅(𝑀) is the set of relaxed shared reads in 𝑀

∙ 𝑅𝑊 (𝑀) is the set of relaxed shared writes in 𝑀

∙ 𝐿𝑅(𝑀) is the set of local reads in 𝑀

∙ 𝐿𝑊 (𝑀) is the set of local writes in 𝑀

5 The set of all writes in 𝑀 is denoted as 𝑊 (𝑀):

𝑊 (𝑀) 𝑑𝑒𝑓

= 𝑆𝑊 (𝑀) ∪ 𝑅𝑊 (𝑀) ∪ 𝐿𝑊 (𝑀)

and the set of all strict accesses in 𝑀 is denoted as 𝑆𝑡𝑟𝑖𝑐𝑡(𝑀):

𝑆𝑡𝑟𝑖𝑐𝑡(𝑀) 𝑑𝑒𝑓

= 𝑆𝑅(𝑀) ∪ 𝑆𝑊 (𝑀)

62 Definitions §B.1

UPC Language Specifications Version 1.3 Draft 4

B.2 Memory Access Model

1 Let 𝑆𝑡𝑟𝑖𝑐𝑡𝑃𝑎𝑖𝑟𝑠(𝑀), 𝑆𝑡𝑟𝑖𝑐𝑡𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀), and 𝐴𝑙𝑙𝑆𝑡𝑟𝑖𝑐𝑡(𝑀) be unordered
pairs of memory operations defined as:

𝑆𝑡𝑟𝑖𝑐𝑡𝑃𝑎𝑖𝑟𝑠(𝑀)𝑑𝑒𝑓

=

{︃
(𝑚1, 𝑚2)

⃒⃒⃒⃒
⃒ 𝑚1 ̸= 𝑚2 ∧ 𝑚1 ∈ 𝑆𝑡𝑟𝑖𝑐𝑡(𝑀) ∧

𝑚2 ∈ 𝑆𝑡𝑟𝑖𝑐𝑡(𝑀)

}︃

𝑆𝑡𝑟𝑖𝑐𝑡𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀)𝑑𝑒𝑓

=

⎧⎪⎨⎪⎩ (𝑚1, 𝑚2)

⃒⃒⃒⃒
⃒⃒⃒ 𝑚1 ̸= 𝑚2 ∧

𝑇ℎ𝑟𝑒𝑎𝑑(𝑚1) = 𝑇ℎ𝑟𝑒𝑎𝑑(𝑚2) ∧
(𝑚1 ∈ 𝑆𝑡𝑟𝑖𝑐𝑡(𝑀) ∨ 𝑚2 ∈ 𝑆𝑡𝑟𝑖𝑐𝑡(𝑀))

⎫⎪⎬⎪⎭
𝐴𝑙𝑙𝑆𝑡𝑟𝑖𝑐𝑡(𝑀)𝑑𝑒𝑓

= 𝑆𝑡𝑟𝑖𝑐𝑡𝑃𝑎𝑖𝑟𝑠(𝑀) ∪ 𝑆𝑡𝑟𝑖𝑐𝑡𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀)

2 Thus, 𝑆𝑡𝑟𝑖𝑐𝑡𝑃𝑎𝑖𝑟𝑠(𝑀) is the set of all pairs of strict memory accesses, includ-
ing those between threads, and 𝑆𝑡𝑟𝑖𝑐𝑡𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀) is the set of all pairs
of memory accesses from the same thread in which at least one is strict.
𝐴𝑙𝑙𝑆𝑡𝑟𝑖𝑐𝑡(𝑀) is their union, which intuitively is the set of operation pairs
for which all threads must agree upon a unique ordering (i.e. all threads
must agree on the directionality of each pair). In general, the determination
of that ordering will depend on the resolution of race conditions at runtime.

3 UPC programs must preserve the serial dependencies within each thread,
defined by the set of ordered pairs 𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀𝑡):

𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑛𝑔(𝑀)𝑑𝑒𝑓

=

{︃
(𝑚1, 𝑚2)

⃒⃒⃒⃒
⃒ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑚1) = 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑚2) ∧

(𝑚1 ∈ 𝑊 (𝑀) ∨ 𝑚2 ∈ 𝑊 (𝑀))

}︃

𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀) 𝑑𝑒𝑓
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
⟨𝑚1, 𝑚2⟩

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒

𝑚1 ̸= 𝑚2 ∧
𝑇ℎ𝑟𝑒𝑎𝑑(𝑚1) = 𝑇ℎ𝑟𝑒𝑎𝑑(𝑚2) ∧
𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝑚1, 𝑚2) ∧(︃

(𝑚1, 𝑚2) ∈ 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑛𝑔(𝑀) ∨
(𝑚1, 𝑚2) ∈ 𝑆𝑡𝑟𝑖𝑐𝑡𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀)

)︃
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

4 𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀𝑡) establishes an ordering between operations issued
by a given thread 𝑡 that involve a data dependence (i.e. those operations in
𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑛𝑔(𝑀𝑡)) – this ordering is the one maintained by serial compilers
and hardware. 𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀𝑡) additionally establishes an ordering
between operations appearing in 𝑆𝑡𝑟𝑖𝑐𝑡𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀𝑡). In both cases, the

§B.2 Memory Access Model 63

UPC Language Specifications Version 1.3 Draft 4

ordering imposed is the one dictated by 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝑚1, 𝑚2), a predicate which
intuitively is an ordering relationship defined by serial program order.43 It’s
important to note that 𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀𝑡) intentionally avoids intro-
ducing ordering constraints between non-conflicting, non-strict operations
executed by a single thread (i.e. it does not impose ordering between a
thread’s relaxed/local operations to independent memory locations, or be-
tween relaxed/local reads to any location). As demonstrated in Section B.5,
this allows implementations to freely reorder any consecutive relaxed/local
operations issued by a single thread, except for pairs of operations accessing
the same location where at least one is a write; by design this is exactly
the condition that is enforced by serial compilers and hardware to main-
tain sequential data dependences – requiring any stronger ordering property
would complicate implementations and likely degrade the performance of re-
laxed/local accesses. The reason this flexibility must be directly exposed
in the model (unlike other program transformation optimizations which are
implicitly permitted by [ISO/IEC00 Sec. 5.1.2.3]) is because the results of
this reordering may be “visible" to other threads in the UPC program (as
demonstrated in Section B.5) and therefore could impact the program’s “in-
put/output dynamics".

5 A UPC program execution on 𝑇 threads with memory accesses 𝑀 is consid-
ered UPC consistent if there exists a partial order <𝑆𝑡𝑟𝑖𝑐𝑡 that provides an
orientation for each pair in 𝐴𝑙𝑙𝑆𝑡𝑟𝑖𝑐𝑡(𝑀) and for each thread 𝑡, there exists
a total order <𝑡 on 𝑂𝑡 ∪ 𝑊 (𝑀) ∪ 𝑆𝑅(𝑀) (i.e. all operations issued by
thread 𝑡 and all writes and strict reads issued by any thread) such that:

1. <𝑡 defines a correct serial execution. In particular:

• Each read operation returns the value of the “most recent" pre-
ceding write to the same location, where “most recent" is defined
by <𝑡. If there is no prior write of the location in question, the
read returns the initial value of the referenced object as defined
by [ISO/IEC00 Sec. 6.7.8/7.2.0.3].44

43The formal definition of 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠 is given in Section B.6.
44i.e. the initial value of an object declared with an initializer is the value given by the

initializer. Objects with static storage duration lacking an initializer have an initial value of
zero. Objects with automatic storage duration lacking an initializer have an indeterminate
(but fixed) initial value. The initial value for a dynamically allocated object is described
by the memory allocation function used to create the object.

64 Memory Access Model §B.2

UPC Language Specifications Version 1.3 Draft 4

• The order of operations in 𝑂𝑡 is consistent with the ordering de-
pendencies in 𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀𝑡).

2. <𝑡 is consistent with <𝑆𝑡𝑟𝑖𝑐𝑡. In particular, this implies that all threads
agree on a total order over the strict operations (𝑆𝑡𝑟𝑖𝑐𝑡(𝑀)), and the
relative ordering of all pairs of operations issued by a single thread
where at least one is strict (𝑆𝑡𝑟𝑖𝑐𝑡𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀)).

6 The set of <𝑡 orderings that satisfy the above constraints are said to be the
enabling orderings for the execution. An execution is UPC consistent if each
UPC thread has at least one such enabling ordering in this set. Conformant
UPC implementations shall only produce UPC consistent executions.

7 The definitions of 𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀) and <𝑡 provide well-defined con-
sistency semantics for local accesses to shared objects, making them behave
similarly to relaxed shared accesses. Note that private objects by defini-
tion may only be accessed by a single thread, and therefore local accesses to
private objects trivially satisfy the constraints of the model – provided the
serial data dependencies across sequence points mandated by [ISO/IEC00
Sec. 5.1.2.3] are preserved for the accesses to private objects on each thread.

B.3 Consistency Semantics of Standard Libraries and
Language Operations

B.3.1 Consistency Semantics of Synchronization Operations

1 UPC provides several synchronization operations in the language and stan-
dard library that can be used to strengthen the consistency requirements of
a program. Sections 7.2.4 and 6.6.1 define the consistency effects of these
operations in terms of a “null strict reference”. The formal definition pre-
sented here is operationally equivalent to that normative definition, but is
more explicit and therefore included here for completeness.

2 The memory consistency semantics of the synchronization operations are
defined in terms of equivalent accesses to a fresh variable 𝑙𝑠𝑦𝑛𝑐ℎ ∈ 𝐿 that
does not appear elsewhere in the program.45

45 Note: These definitions do not give the synchronization operations their synchronizing
effects – they only define the memory model behavior.

§B.3 Consistency Semantics of Standard Libraries and
Language Operations 65

UPC Language Specifications Version 1.3 Draft 4

• A 𝑢𝑝𝑐_𝑓𝑒𝑛𝑐𝑒 statement implies a strict write followed by a strict read:
𝑆𝑊 (𝑙𝑠𝑦𝑛𝑐ℎ, 0) ; 𝑆𝑅(𝑙𝑠𝑦𝑛𝑐ℎ, 0)

• A 𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦 statement implies a strict write: 𝑆𝑊 (𝑙𝑠𝑦𝑛𝑐ℎ, 0) immedi-
ately after evaluation of the optional argument (if any) and before the
notification operation has been posted.

• A 𝑢𝑝𝑐_𝑤𝑎𝑖𝑡 statement implies a strict read: 𝑆𝑅(𝑙𝑠𝑦𝑛𝑐ℎ, 0) immediately
after the completion of the statement.

• A 𝑢𝑝𝑐_𝑙𝑜𝑐𝑘() call or a successful 𝑢𝑝𝑐_𝑙𝑜𝑐𝑘_𝑎𝑡𝑡𝑒𝑚𝑝𝑡() call implies a
strict read: 𝑆𝑅(𝑙𝑠𝑦𝑛𝑐ℎ, 0) immediately before return.

• A 𝑢𝑝𝑐_𝑢𝑛𝑙𝑜𝑐𝑘 call implies a strict write: 𝑆𝑊 (𝑙𝑠𝑦𝑛𝑐ℎ, 0) immediately
upon entry to the function.

3 The actual data values involved in these implied strict accesses is irrelevant.
The strict operations implied by the synchronization operations are present
only to serve as a consistency point, introducing orderings in <𝑆𝑡𝑟𝑖𝑐𝑡 that
restrict the relative motion in each <𝑡 of any surrounding non-strict accesses
to shared objects issued by the calling thread.

B.3.2 Consistency Semantics of Standard Library Calls

1 Many of the functions in the UPC standard library can be used to access
and modify data in shared objects, either non-collectively (e.g. 𝑢𝑝𝑐_𝑚𝑒𝑚-
{𝑝𝑢𝑡, 𝑔𝑒𝑡, 𝑐𝑝𝑦}) or collectively (e.g. 𝑢𝑝𝑐_𝑎𝑙𝑙_𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡, etc). This section
defines the consistency semantics of the accesses to shared objects which are
implied to take place within the implementation of these library functions,
to provide well-defined semantics in the presence of concurrent explicit reads
and writes of the same shared objects. For example, an application which
calls a function such as 𝑢𝑝𝑐_𝑚𝑒𝑚𝑐𝑝𝑦 may need to know whether surrounding
explicit relaxed operations on non-conflicting shared objects could possibly
be reordered relative to the accesses that take place inside the library call.
This is a subtle but unavoidable aspect to the library interface which needs to
be explicitly defined to ensure that applications can be written with portably
deterministic behavior across implementations.

2 The following sections define the consistency semantics of shared accesses
implied by UPC standard library functions, in the absence of any explicit

66 Consistency Semantics of Standard Library Calls §B.3.2

UPC Language Specifications Version 1.3 Draft 4

consistency specification for the given function (which would always take
precedence in the case of conflict).

B.3.2.1 Non-Collective Standard Library Calls

1 For non-collective functions in the UPC standard library (e.g. 𝑢𝑝𝑐_𝑚𝑒𝑚{𝑝𝑢𝑡, 𝑔𝑒𝑡, 𝑐𝑝𝑦}),
any implied data accesses to shared objects behave as a set of relaxed shared
reads and relaxed shared writes of unspecified size and ordering, issued by the
calling thread. No strict operations or fences are implied by a non-collective
library function call, unless explicitly noted otherwise.

2 EXAMPLE 1:

#include <upc_relaxed.h>

shared int x, y; // initial values are zero
shared [] int z[2]; // initial values are zero
int init_z[2] = { -3, -4 };
...
if (MYTHREAD == 0) {

x = 1;

upc_memput(z, init_z, 2*sizeof(int));

y = 2;
} else {

#pragma upc strict
int local_y = y;
int local_z1 = z[1];
int local_z0 = z[0];
int local_x = x;
...

}

In this example, all of the writes to shared objects are relaxed (including
the accesses implied by the library call), and thread 0 executes no strict
operations or fences which would inhibit reordering. Therefore, other threads
which are concurrently performing strict shared reads of the shared objects
(𝑥, 𝑦, 𝑧[0] and 𝑧[1]) may observe the updates occurring in any arbitrary order
that need not correspond to thread 0’s program order. For example, thread 1

§B.3.2.1 Non-Collective Standard Library Calls 67

UPC Language Specifications Version 1.3 Draft 4

may observe a final result of 𝑙𝑜𝑐𝑎𝑙_𝑦 == 2, 𝑙𝑜𝑐𝑎𝑙_𝑧1 == −4, 𝑙𝑜𝑐𝑎𝑙_𝑧0 == 0
and 𝑙𝑜𝑐𝑎𝑙_𝑥 == 0, or any other permutation of old and new values for the
result of the strict shared reads. Furthermore, because the shared writes
implied by the library call have unspecified size, thread 1 may even read
intermediate values into 𝑙𝑜𝑐𝑎𝑙_𝑧0 and 𝑙𝑜𝑐𝑎𝑙_𝑧1 which correspond to neither
the initial nor the final values for those shared objects.46 Finally, note that
all of these observations remain true even if 𝑧 had instead been declared as:

strict shared [] int z[2];

because the consistency qualification used on the shared object declarator is
irrelevant to the operation of the library call, whose implied shared accesses
are specified to always behave as relaxed shared accesses.

3 If 𝑢𝑝𝑐_𝑓𝑒𝑛𝑐𝑒 operations were inserted in the blank lines immediately preced-
ing and following the 𝑢𝑝𝑐_𝑚𝑒𝑚𝑝𝑢𝑡 invocation in the example above, then
<𝑆𝑡𝑟𝑖𝑐𝑡 would imply that all reading threads would be guaranteed to observe
the shared writes according to thread 0’s program order. Specifically, any
thread reading a non-initial value into 𝑙𝑜𝑐𝑎𝑙_𝑦 would be guaranteed to read
the final values for all the other shared reads, and any thread reading the
initial zero value into 𝑙𝑜𝑐𝑎𝑙_𝑥 would be guaranteed to also have read the
initial zero values for all the other shared reads.47 Explicit use of 𝑢𝑝𝑐_𝑓𝑒𝑛𝑐𝑒
immediately preceding and following non-collective library calls operating
on shared objects is the recommended method for ensuring ordering with re-
spect to surrounding relaxed operations issued by the calling thread, in cases
where such ordering guarantees are required for program correctness.

B.3.2.2 Collective Standard Library Calls

1 For collective functions in the UPC standard library, any implied data ac-
cesses to shared objects behave as a set of relaxed shared reads and relaxed
shared writes of unspecified size and ordering, issued by one or more unspec-
ified threads (unless explicitly noted otherwise).

2 For collective functions in the UPC standard library that take a 𝑢𝑝𝑐_𝑓𝑙𝑎𝑔_𝑡

46This is a consequence of the byte-oriented nature of shared data movement functions
(which is assumed in the absence of further specification) and is orthogonal to the issue
of write atomicity.

47However, for threads reading the initial value into 𝑙𝑜𝑐𝑎𝑙_𝑦 and the final value into
𝑙𝑜𝑐𝑎𝑙_𝑥, the writes to 𝑧[0] and 𝑧[1] could still appear to have been arbitrarily reordered
or segmented, leading to indeterminate values in 𝑙𝑜𝑐𝑎𝑙_𝑧0 and 𝑙𝑜𝑐𝑎𝑙_𝑧1.

68 Collective Standard Library Calls §B.3.2.2

UPC Language Specifications Version 1.3 Draft 4

argument (e.g. 𝑢𝑝𝑐_𝑎𝑙𝑙_𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡), one or more 𝑢𝑝𝑐_𝑓𝑒𝑛𝑐𝑒 operations may
be implied upon entry and/or exit to the library call, based on the flags
selected in the value of the 𝑢𝑝𝑐_𝑓𝑙𝑎𝑔_𝑡 argument, as follows:

• UPC_IN_ALLSYNC and UPC_IN_MYSYNC imply a 𝑢𝑝𝑐_𝑓𝑒𝑛𝑐𝑒 operation on
each calling thread, immediately upon entry to the library function call.

• UPC_OUT_ALLSYNC and UPC_OUT_MYSYNC imply a 𝑢𝑝𝑐_𝑓𝑒𝑛𝑐𝑒 operation
on each calling thread, immediately before return from the library func-
tion call.

• No fence operations are implied by UPC_IN_NOSYNC or UPC_OUT_NOSYNC.

3 The 𝑢𝑝𝑐_𝑓𝑒𝑛𝑐𝑒 operations implied by the rules above are sufficient to en-
sure the results one would naturally expect in the presence of relaxed or
local accesses to shared objects issued immediately preceding or following
an ALLSYNC or MYSYNC collective library call that accesses the same shared
objects. Without such fences, nothing would prevent prior or subsequent
non-strict operations issued by the calling thread from being reordered rel-
ative to some of the accesses implied by the library call (which might not
be issued by the current thread), potentially leading to very surprising and
unintuitive results. The NOSYNC flag provides no synchronization guarantees
between the execution stream of the calling thread and the shared accesses
implied by the collective library call, therefore no additional fence operations
are required.48

B.4 Properties Implied by the Specification

1 The memory model definition is rather subtle in some points, but as de-
scribed in Section 5.1.2.3, most programmers need not worry about these
details. There are some simple properties that are helpful in understanding
the semantics.49 The first property is:

48Any deterministic program which makes use of NOSYNC collective data movement func-
tions is likely to be synchronizing access to shared objects via other means – for example,
through the use of explicit 𝑢𝑝𝑐_𝑏𝑎𝑟𝑟𝑖𝑒𝑟 or ALLSYNC/MYSYNC collective calls that already
provide sufficient synchronization and fences.

49Note the properties described in this section and in Section 5.1.2.3 apply only to
programs which are “conforming” as defined by [ISO/IEC00 Sec. 4] – namely, those where
no thread performs an operation which is labelled as having undefined behavior (e.g.
dereferencing an uninitialized pointer).

§B.4 Properties Implied by the Specification 69

UPC Language Specifications Version 1.3 Draft 4

• A UPC program which accesses shared objects using only strict oper-
ations50 will be sequentially consistent.

2 This property is trivially true due to the global total order that <𝑆𝑡𝑟𝑖𝑐𝑡 im-
poses over strict operations (which is respected in every thread’s <𝑡), but
may not very useful in practice – because the exclusive use of strict op-
erations for accessing shared objects may incur a noticeable performance
penalty. Nevertheless, this property may still serve as a useful debugging
mechanism, because even in the presence of data races a fully strict program
is guaranteed to only produce behaviors allowed under sequential consistency
[Lam79], which is generally considered the simplest parallel memory model
to understand and the one which naïve programmers typically assume.

3 Of more interest is that programs free of race conditions will also be sequen-
tially consistent. This requires a more formal definition of race condition,
because programmers may believe their program is properly synchronized
using memory operations when it is not.

4 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑅𝑎𝑐𝑒𝑠(𝑀) is defined as a set of unordered pairs (𝑚1, 𝑚2):

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑅𝑎𝑐𝑒𝑠(𝑀)𝑑𝑒𝑓

=

⎧⎪⎨⎪⎩(𝑚1, 𝑚2)

⃒⃒⃒⃒
⃒⃒⃒ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑚1) = 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑚2) ∧

𝑇ℎ𝑟𝑒𝑎𝑑(𝑚1) ̸= 𝑇ℎ𝑟𝑒𝑎𝑑(𝑚2) ∧
(𝑚1 ∈ 𝑊 (𝑀) ∨ 𝑚2 ∈ 𝑊 (𝑀))

⎫⎪⎬⎪⎭
5 An execution is race-free if every (𝑚1, 𝑚2) ∈ 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑅𝑎𝑐𝑒𝑠(𝑀) is ordered

by <𝑆𝑡𝑟𝑖𝑐𝑡. i.e. an execution is race-free if and only if:

∀(𝑚1, 𝑚2) ∈ 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑅𝑎𝑐𝑒𝑠(𝑀) : (𝑚1 <𝑆𝑡𝑟𝑖𝑐𝑡 𝑚2) ∨ (𝑚2 <𝑆𝑡𝑟𝑖𝑐𝑡 𝑚1)

6 Note this implies that all threads 𝑡 and all enabling orderings <𝑡 agree upon
the ordering of each (𝑚1, 𝑚2) ∈ 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑅𝑎𝑐𝑒𝑠(𝑀) (so there is no race).
These definitions allow us to state a very useful property of UPC programs:

• A program that produces only race-free executions will be sequentially
consistent.

7 Note that UPC locks and barriers constrain 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑅𝑎𝑐𝑒𝑠 as one would ex-
pect, because these synchronization primitives imply strict operations which
introduce orderings in <𝑆𝑡𝑟𝑖𝑐𝑡 for the operations in question.

50i.e. no relaxed shared accesses, and no accesses to shared objects via pointers-to-local

70 Properties Implied by the Specification §B.4

UPC Language Specifications Version 1.3 Draft 4

B.5 Examples

1 The subsequent examples demonstrate the semantics of the memory model
by presenting hypothetical execution traces and explaining how the memory
model either allows or disallows the behavior exhibited in each trace. The
examples labelled “disallowed” denote a trace which is not UPC consistent
and therefore represent a violation of the specified memory model. Such
an execution trace shall never be generated by a conforming UPC imple-
mentation. The examples labelled “allowed” denote a trace which is UPC
consistent and therefore represent a permissible execution that satisfies the
constraints of the memory model. Such an execution trace may be generated
by a conforming UPC implementation.51

2 In the figures below, each execution is shown by the linear graph which is the
𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠() program order for each thread, generated by an execution of the
source program on the abstract machine. Pairs of memory operations that
are ordered by the global ordering over memory operations in 𝐴𝑙𝑙𝑆𝑡𝑟𝑖𝑐𝑡(𝑀)
(i.e. 𝑚1 <𝑆𝑡𝑟𝑖𝑐𝑡 𝑚2) are represented as 𝑚1 ⇒ 𝑚2. All threads must agree
upon the relative ordering imposed by these edges in their <𝑡 orderings. Pairs
ordered by a thread 𝑡 as in 𝑚1 <𝑡 𝑚2 are represented by 𝑚1 → 𝑚2.
Arcs that are implied by transitivity are omitted. Assume all variables are
initialized to 0.

3 EXAMPLE 1: Allowed behavior that would not be allowed under sequen-
tial consistency. There are only relaxed operations, so threads need not ob-
serve the program order of other threads. Because all operations are relaxed,
there are no ⇒ orderings between operations.

𝑇0: RR(x,1); RW(x,2)
𝑇1: RR(x,2); RW(x,1)

51The memory model specifies guarantees which must be true of any conformant UPC
implementation and therefore may be portably relied upon by users. A given UPC im-
plementation may happen to provide guarantees which are stronger than those required
by the model, thus in general the set of behaviors which can be generated by conformant
implementation will be a subset of those behaviors permitted by the model.

§B.5 Examples 71

UPC Language Specifications Version 1.3 Draft 4

<0: 𝑅𝑅(𝑥, 1) // 𝑅𝑊 (𝑥, 2)

𝑅𝑊 (𝑥, 1)

ff
𝑇0 observes 𝑇1’s write happening before
its own read.

<1: 𝑅𝑊 (𝑥, 2)

xx
𝑅𝑅(𝑥, 2) // 𝑅𝑊 (𝑥, 1)

𝑇1 must observe its own program order
for conflicting operations, but it sees 𝑇0’s
write as the first operation.

Note that relaxed reads issued by thread 𝑡 only appear in the <𝑡 of that
thread.

4 EXAMPLE 2: Disallowed behavior which is the same as the previous
example, but with all accesses made strict. All edges in the graph below
must therefore be ⇒ edges. This also implies the program order edges must
be observed in <𝑆𝑡𝑟𝑖𝑐𝑡 and the two threads must agree on the order of the
races. The use of unique values in the writes for this example forces an
orientation of the cross-thread edges, so an acyclic <𝑆𝑡𝑟𝑖𝑐𝑡 cannot be defined
that satisfies the write-to-read data flow requirements for a valid <𝑡.

𝑇0: SR(x,1); SW(x,2)
𝑇1: SR(x,2); SW(x,1)

<𝑆𝑡𝑟𝑖𝑐𝑡: 𝑆𝑅(𝑥, 1) +3 𝑆𝑊 (𝑥, 2)

t|
𝑆𝑅(𝑥, 2) +3 𝑆𝑊 (𝑥, 1)

bj
All of the edges shown are required, but this
is not a valid <𝑆𝑡𝑟𝑖𝑐𝑡, since it contains a cycle.

5 EXAMPLE 3: Allowed behavior that would be disallowed (as in the first
example) if all of the accesses were strict. Again one thread may observe the
other’s operations happening out of program order. This is the pattern of
memory operations that one might see with a spin lock, where 𝑦 is the lock
protecting the variable 𝑥. The implication is that UPC programmers should
not build synchronization out of relaxed operations.

72 Examples §B.5

UPC Language Specifications Version 1.3 Draft 4

𝑇0: RW(x,1); RW(y,1)
𝑇1: RR(y,1); RR(x,0)

<0: 𝑅𝑊 (𝑥, 1) // 𝑅𝑊 (𝑦, 1) 𝑇0 observes only its own writes.
The writes are non-conflicting, so either or-
dering constitutes a valid <0.

<1: 𝑅𝑊 (𝑥, 1) 𝑅𝑊 (𝑦, 1)

xx
𝑅𝑅(𝑦, 1) // 𝑅𝑅(𝑥, 0)

ff
To satisfy write-to-read data flow in <1,
RW(x,1) must follow RR(x,0) and RR(y,1)
must follow RW(y,1). There are three
other valid <1 orderings which satisfy these
constraints.

6 EXAMPLE 4: Allowed behavior that would be disallowed under sequential
consistency. This example is similar to the previous ones, but involves a read-
after-write on each processor. Neither thread sees the update by the other,
but in the <𝑡 orderings, each thread conceptually observes the other thread’s
operations happening out of order.

𝑇0: RW(x,1); RR(y,0)
𝑇1: RW(y,1); RR(x,0)

<0: 𝑅𝑊 (𝑥, 1) // 𝑅𝑅(𝑦, 0)

xx
𝑅𝑊 (𝑦, 1)

The only constraint on <0 is RW(y,1) must
follow RR(y,0). Several other valid <0 or-
derings are possible.

<1: 𝑅𝑊 (𝑥, 1)

𝑅𝑊 (𝑦, 1) // 𝑅𝑅(𝑥, 0)

ff
Analogous situation with a write-after-
read, this time on x. Several other valid
<1 orderings are possible.

7 EXAMPLE 5: Disallowed behavior because with strict accesses, one of
the two writes must “win” the race condition. Each thread observes the other
thread’s write happening after its own write, which creates a cycle when one
attempts to construct <𝑆𝑡𝑟𝑖𝑐𝑡.

§B.5 Examples 73

UPC Language Specifications Version 1.3 Draft 4

𝑇0: SW(x,2); SR(x,1)
𝑇1: SW(x,1); SR(x,2)

<𝑆𝑡𝑟𝑖𝑐𝑡: 𝑆𝑊 (𝑥, 2)
KS

��

+3 𝑆𝑅(𝑥, 1)

𝑆𝑊 (𝑥, 1) +3 𝑆𝑅(𝑥, 2)

8 EXAMPLE 6: Allowed behavior where a thread observes its own reads
occurring out-of-order. Reordering of reads is commonplace in serial com-
pilers/hardware, but in this case an intervening modification by a different
thread makes this reordering visible. Strengthening the model to prohibit
such reordering of relaxed reads to the same location would impose serious
restrictions on the implementation of relaxed reads that would likely degrade
performance - for example, under such a model an optimizer could not re-
order the reads in this example (or allow them to proceed as concurrent
non-blocking operations if they might be reordered in the network) unless it
could statically prove the reads were to different locations or no other thread
was writing the location.

𝑇0: RW(x,1); SW(y,1); RW(x,2)
𝑇1: RR(x,2); RR(x,1)

<𝑆𝑡𝑟𝑖𝑐𝑡: 𝑅𝑊 (𝑥, 1) +3 𝑆𝑊 (𝑦, 1) +3 𝑅𝑊 (𝑥, 2) 𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀0) implies
this is the only valid <𝑆𝑡𝑟𝑖𝑐𝑡 ordering
over 𝑆𝑡𝑟𝑖𝑐𝑡𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀)

<0: 𝑅𝑊 (𝑥, 1) +3
**

𝑆𝑊 (𝑦, 1) +3
**

𝑅𝑊 (𝑥, 2) <0 conforms to <𝑆𝑡𝑟𝑖𝑐𝑡

<1: 𝑅𝑊 (𝑥, 1) +3

&&

𝑆𝑊 (𝑦, 1) +3
**

𝑅𝑊 (𝑥, 2)

ss
𝑅𝑅(𝑥, 2) 𝑅𝑅(𝑥, 1)

OO
<1 conforms to <𝑆𝑡𝑟𝑖𝑐𝑡. T1’s oper-
ations on x do not conflict because
they are both reads, and hence may
appear relatively reordered in <1.
One other <1 ordering is possible.

74 Examples §B.5

UPC Language Specifications Version 1.3 Draft 4

9 EXAMPLE 7: Disallowed behavior similar to the previous example, but
in this case the addition of a relaxed write on thread 1 introduces dependen-
cies in 𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀1), such that (all else being equal) the model
requires T1’s second read to return the value 3. If T1’s write were to any
location other than x, the behavior shown would be allowed.

𝑇0: RW(x,1); SW(y,1); RW(x,2)
𝑇1: RR(x,2); RW(x,3); RR(x,1)

<𝑆𝑡𝑟𝑖𝑐𝑡: 𝑅𝑊 (𝑥, 1) +3 𝑆𝑊 (𝑦, 1) +3 𝑅𝑊 (𝑥, 2) 𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀0) implies
this is the only valid <𝑆𝑡𝑟𝑖𝑐𝑡 ordering
over 𝑆𝑡𝑟𝑖𝑐𝑡𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀)

<0: 𝑅𝑊 (𝑥, 1) +3
**

𝑆𝑊 (𝑦, 1) +3
**

𝑅𝑊 (𝑥, 2)

xx
𝑅𝑊 (𝑥, 3)

<0 conforms to <𝑆𝑡𝑟𝑖𝑐𝑡. Other or-
derings are possible.

<1: 𝑅𝑊 (𝑥, 1) +3
**

𝑆𝑊 (𝑦, 1) +3
**

𝑅𝑊 (𝑥, 2)

ss
𝑅𝑅(𝑥, 2) // 𝑅𝑊 (𝑥, 3) // 𝑅𝑅(𝑥, ?)

This is the only <1 that
conforms to <𝑆𝑡𝑟𝑖𝑐𝑡 and
𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀1). The
second read of x cannot return 1 -
it must return 3.

10 EXAMPLE 8: Disallowed behavior demonstrating why strict reads appear
in every <𝑡, rather than just for the thread that issued them. If the strict
reads were absent from <0, this behavior would be allowed.

𝑇0: RW(x,1); RW(x,2)
𝑇1: SR(x,2); SR(x,1)

§B.5 Examples 75

UPC Language Specifications Version 1.3 Draft 4

<𝑆𝑡𝑟𝑖𝑐𝑡:

𝑆𝑅(𝑥, 2) +3 𝑆𝑅(𝑥, 1)

𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀1) implies
this is the only valid <𝑆𝑡𝑟𝑖𝑐𝑡 ordering
over 𝑆𝑡𝑟𝑖𝑐𝑡𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀)

<0: 𝑅𝑊 (𝑥, 1) // 𝑅𝑊 (𝑥, 2)

xx
𝑆𝑅(𝑥, 2) +3

**
𝑆𝑅(𝑥, ?)

This is the only <0 that
conforms to <𝑆𝑡𝑟𝑖𝑐𝑡 and
𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀0). The
second read of x cannot return 1 -
it must return 2.

11 EXAMPLE 9: Allowed behavior similar to the previous example, but the
writes are no longer conflicting, and therefore not ordered by 𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀0).

𝑇0: RW(x,1); RW(y,1)
𝑇1: SR(y,1); SR(x,0)

<𝑆𝑡𝑟𝑖𝑐𝑡:

𝑆𝑅(𝑦, 1) +3 𝑆𝑅(𝑥, 0)

𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀1) implies
this is the only valid <𝑆𝑡𝑟𝑖𝑐𝑡 ordering
over 𝑆𝑡𝑟𝑖𝑐𝑡𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀)

<0, <1: 𝑅𝑊 (𝑥, 1) 𝑅𝑊 (𝑦, 1)

xx
𝑆𝑅(𝑦, 1) +3

**
𝑆𝑅(𝑥, 0)

ff
The writes are non-conflicting,
therefore not ordered by
𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀0).

12 EXAMPLE 10: Allowed behavior Another example of a thread observing
its own relaxed reads out of order, regardless of location accessed.

𝑇0: RW(x,1); SW(y,1)
𝑇1: RR(y,1); RR(x,1); RR(x,0)

76 Examples §B.5

UPC Language Specifications Version 1.3 Draft 4

<𝑆𝑡𝑟𝑖𝑐𝑡: 𝑅𝑊 (𝑥, 1) +3 𝑆𝑊 (𝑦, 1) 𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀0) implies
this is the only valid <𝑆𝑡𝑟𝑖𝑐𝑡 ordering
over 𝑆𝑡𝑟𝑖𝑐𝑡𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀)

<0: 𝑅𝑊 (𝑥, 1) +3
**

𝑆𝑊 (𝑦, 1) Relaxed reads from thread 1 do not
appear in <0

<1: 𝑅𝑊 (𝑥, 1) +3
**

𝑆𝑊 (𝑦, 1)

xx
𝑅𝑅(𝑦, 1) // 𝑅𝑅(𝑥, 1) 𝑅𝑅(𝑥, 0)

kk
Relaxed reads have been re-
ordered. Other <1 orders
are possible.

13 EXAMPLE 11: Disallowed behavior demonstrating that a barrier syn-
chronization orders relaxed operations as one would expect.

𝑇0: RW(x,1); upc_notify; upc_wait
𝑇1: upc_notify; upc_wait; RR(x,0)

<𝑆𝑡𝑟𝑖𝑐𝑡:
𝑅𝑊 (𝑥, 1) +3𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦

(= 𝑆𝑊*)
+3

�� !)

𝑢𝑝𝑐_𝑤𝑎𝑖𝑡
(= 𝑆𝑅*)

𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦
(= 𝑆𝑊*)

+3

5=

𝑢𝑝𝑐_𝑤𝑎𝑖𝑡
(= 𝑆𝑅*)

+3

KS

𝑅𝑅(𝑥, 0)

𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀) and the
synchronization semantics of
barrier imply that <𝑆𝑡𝑟𝑖𝑐𝑡 must
respect all the edges shown.52

There is no valid <1 which respects <𝑆𝑡𝑟𝑖𝑐𝑡 – write-to-read data flow along
the chain 𝑅𝑊 (𝑥, 1) ⇒ 𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦 ⇒ 𝑢𝑝𝑐_𝑤𝑎𝑖𝑡 ⇒ 𝑅𝑅(𝑥, 0) implies the
read must return 1 (i.e. because 𝑅𝑊 (𝑥, 1) <𝑆𝑡𝑟𝑖𝑐𝑡 𝑅𝑅(𝑥, 0) and there are no
intervening writes of x).

14 EXAMPLE 12: Disallowed behavior <𝑆𝑡𝑟𝑖𝑐𝑡 is an ordering over the pairs in
𝐴𝑙𝑙𝑆𝑡𝑟𝑖𝑐𝑡(𝑀), which includes an edge between two 𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦 operations.
Every <𝑡 must conform to a single <𝑆𝑡𝑟𝑖𝑐𝑡 ordering – all threads agree on a

52except for the edge between the 𝑢𝑝𝑐_𝑤𝑎𝑖𝑡 operations and the edge between the
𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦 operations, both of which can point either way.

§B.5 Examples 77

UPC Language Specifications Version 1.3 Draft 4

single total order over 𝑆𝑅(𝑀) ∪ 𝑆𝑊 (𝑀) in general, and in particular they
all agree on the order of 𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦 operations. Therefore, at least one of
the read operations must return 1.

𝑇0: RW(x,1); upc_notify; RR(y,0); (upc_wait not shown)
𝑇1: RW(y,1); upc_notify; RR(x,0); (upc_wait not shown)

<𝑆𝑡𝑟𝑖𝑐𝑡:
𝑅𝑊 (𝑥, 1) +3𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦

(= 𝑆𝑊*)
+3

��

𝑅𝑅(𝑦, 0)

𝑅𝑊 (𝑦, 1) +3𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦
(= 𝑆𝑊*)

+3 𝑅𝑅(𝑥, 0)

𝐷𝑒𝑝𝑒𝑛𝑑𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀0) implies these
edges in 𝑆𝑡𝑟𝑖𝑐𝑡𝑂𝑛𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑀) must be
respected by <𝑆𝑡𝑟𝑖𝑐𝑡.53

<0: 𝑅𝑊 (𝑥, 1) +3
--
𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦
(= 𝑆𝑊*)

+3

��

**
𝑅𝑅(𝑦, 0)

tt
𝑅𝑊 (𝑦, 1) +3

--
𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦
(= 𝑆𝑊*)

<1: 𝑅𝑊 (𝑥, 1) +3𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦
(= 𝑆𝑊*)

��

𝑅𝑊 (𝑦, 1) +3𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦
(= 𝑆𝑊*)

+3 𝑅𝑅(𝑥, 0) Read cannot return 0.

There is no valid <1 which respects <𝑆𝑡𝑟𝑖𝑐𝑡 – write-to-read data flow along
the chain 𝑅𝑊 (𝑥, 1) ⇒ 𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦 ⇒ 𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦 ⇒ 𝑅𝑅(𝑥, 0) implies the
read must return 1 (i.e. because 𝑅𝑊 (𝑥, 1) <𝑆𝑡𝑟𝑖𝑐𝑡 𝑅𝑅(𝑥, 0) and there are
no intervening writes of x). Reversing the edge between the 𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦
operations in <𝑆𝑡𝑟𝑖𝑐𝑡 causes an analogous problem for y in <0.

53except the edge between the 𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦 operations, which can point either way.

78 Examples §B.5

UPC Language Specifications Version 1.3 Draft 4

B.6 Formal Definition of Precedes

1 This section outlines a formal definition for the 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝑚1, 𝑚2) partial
order, a predicate which inspects two memory operations in the execution
trace that were issued by the same thread and returns true if and only if 𝑚1
is required to precede 𝑚2, according to the sequential abstract machine se-
mantics of [ISO/IEC00 Sec. 5.1.2.3], applied to the given thread. Intuitively,
this partial order serves to constrain legal serial program behavior based on
the order of the statements a programmer wrote in the source program. For
most purposes, it is sufficient to rely upon an intuitive understanding of se-
quential program order when interpreting the behavior of 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠() in the
memory model - this section provides a more concrete definition which may
be useful to compiler writers.

2 In general, the memory model affects the instructions which are issued (and
therefore, the illusory “program order", if we were endeavoring to construct
a total order on memory operations given only a static program). Luckily,
providing a functional definition for 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠() does not require us to embark
on the problematic exercise of defining a totally-ordered “program order" of
legal executions based only on the static program. All that’s required is a
way to determine after-the-fact (i.e. given an execution trace) whether two
memory operations that did execute on a single thread were generated by
source-level operations that are required to have a given ordering by the
sequential abstract machine semantics. Finally, note that 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠() is a
partial order and not a total order - two accesses from a given thread which
are not separated by a sequence point in the abstract machine semantics will
not be ordered by 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠() (and by extension, their relative order will not
be constrained by the memory model).

3 Given any memory access in the trace, it is assumed that we can decide
uniquely which source-level operation generated the access. One mechanism
for providing this mapping would be to attach an abstract “source line num-
ber" tag to every memory access indicating the source-level operation that
generated it.54

54Compiler optimizations which coalesce accesses or remove them entirely are orthogonal
to this discussion - specifically, the correctness of such optimizations are defined in terms
of a behavioral equivalence to the unoptimized version. Therefore, as far as the memory
model is concerned, every operation in the execution trace is guaranteed to map to a
unique operation at the source level.

§B.6 Formal Definition of Precedes 79

UPC Language Specifications Version 1.3 Draft 4

In practice, this abstract numbering needs to be slightly different from actual
source line number because the user may have broken a line in the middle
of an expression where the abstract machine guarantees no ordering - but
we can conceptually add or remove line breaks as necessary to make the line
numbers match up with abstract machine sequence points without changing
the meaning of the program (ie whitespace is not significant). Also, without
lack of generality we can assume the program consists only of a single UPC
source file, and therefore the numbering within this file covers every access
the program could potentially execute.55

4 Now, notice that given the numbering and mapping above, we could imme-
diately define an adequate 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠() relation if our program consisted of
only straight-line code (ie a single basic block in CFG terminology). Specif-
ically, in the absence of branches there is no ambiguity about how to define
𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠() - a simple integer less-than (<) comparison of the line number
tags is sufficient.

Additionally, notice that a program containing only straight-line code and
forward branches can also easily be incorporated in this approach (ie the
CFG for our program is a DAG). In this case, the basic blocks can be ar-
ranged such that abstract machine execution always proceeds through line
numbers in monotonically non-decreasing order, so a simple integer less-than
(<) comparison of the line number tags attached to the dynamic operations
is still a sufficient definition for 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠.

5 Obviously we want to also describe the behavior of programs with backward
branches. We handle them by defining a sequence of abstract rewriting oper-
ations on the original program that generate a new, simplified representation
of the program with equivalent abstract machine semantics but without any
backward branches (so we reduce to the case above). Here are the rewriting
steps on the original program:

Step 1. Translate all the high-level control-flow constructs in the program
into straight-line code with simple conditional or unconditional branches.
Lower all compound expressions into “simple expressions" with equivalent
semantics, introducing private temporary variables as necessary. Each “sim-
ple expression" should involve at most one memory access to a location in

55Multi-file programs are easily accomodated by stating the source files are all concate-
nated together into a single master source file for the purposes of defining 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠.

80 Formal Definition of Precedes §B.6

UPC Language Specifications Version 1.3 Draft 4

the original program. Order the simple expressions such that the abstract
machine semantics of the original program are preserved, placing line breaks
as required to respect sequence point boundaries. In cases where the abstract
machine semantics leave evaluation order unspecified, place the relevant sim-
ple expressions on the same line.

At this point rewritten program code consists solely of memory operations,
arithmetic expressions, built-in operations (like 𝑢𝑝𝑐_𝑛𝑜𝑡𝑖𝑓𝑦), and conditional
or unconditional goto operations. For example this program:

1: i = 0;
2: while (i < 10) {
3: A[i] = i;
4: i = i + 1;
5: }
6: A[10] = -1;

Conceptually becomes:

1: i = 0;
2: if (i >= 10) goto 6;
3: tmp_1 = i; A[i] = tmp_1;
4: tmp_2 = i; i = tmp_2 + 1;
5: goto 2;
6: A[10] = -1;

The translation for the other control-flow statements is similarly straightfor-
ward and well-documented in the literature of assembly code generation tech-
niques for C-like languages. All control flow (including function call/return,
setjmp/longjmp, etc) can be represented as (un)conditional branches in this
manner. Call this rewritten representation the step-1 program.

Step 2. Compute the maximum line number (𝑀𝐿𝑁) of the step-1 program
(𝑀𝐿𝑁 = 6 in the example). Clone the step-1 program an infinite number
of times and concatenate the copies together, adjusting the line numbering
for the 2nd and subsequent copies appropriately (note, this is an abstract
transformation, so the infinite length of the result is not a practical issue).
While cloning, rewrite all the goto operations as follows:

For a goto operation in copy 𝐶 of the step-1 program (zero-based numbering),
which is a copy of line number 𝑁 in the step-1 program and targeting original

§B.6 Formal Definition of Precedes 81

UPC Language Specifications Version 1.3 Draft 4

line number 𝑇 :

if (T > N) set goto target = C*MLN + T // step-1 forward branch
else set goto target = (C+1)*MLN + T // step-1 backward branch

In other words, step-1 forward branches branch to the same relative place
in the current copy of the step-1 program, and backward branches become
forward branches to the next copy of the step-1 program. So our example
above conceptually becomes:

1: i = 0;
2: if (i >= 10) goto 6;
3: tmp_1 = i; A[i] = tmp_1;
4: tmp_2 = i; i = tmp_2 + 1;
5: goto 8; // rewritten backward goto
6: A[10] = -1;

7: i = 0;
8: if (i >= 10) goto 12; // rewritten forward goto
9: tmp_1 = i; A[i] = tmp_1;
10: tmp_2 = i; i = tmp_2 + 1;
11: goto 14; // rewritten backward goto
12: A[10] = -1;

13: i = 0;
...

After this transformation, all branches are forward branches. Now, the mem-
ory model describes behavior of the step-2 rewritten program, and 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠()
is defined as a simple integer less-than (<) comparison of the step-2 program’s
line number tags attached to any two given memory accesses in the execution
trace.

82 Formal Definition of Precedes §B.6

UPC Language Specifications Version 1.3 Draft 4

C UPC versus C Standard Section Number-
ing

UPC spec section ISO/IEC 9899 section Description
1 1 Scope
2 2 Normative references
3 3 Terms, definitions and symbols
4 4 Conformance
5 5 Environment
6 6 Language

6.1 6.1 Notations
6.2 6.4.1 Keywords
6.3 6.4.2.2 Predefined identifiers

6.4.1 6.5.3 Unary operators
6.4.2 6.5.6 Pointer-to-shared arithmetic
6.4.3 6.5.4/6.5.16 Cast and assignment expressions
6.4.4 6.5.3.2 Address operators
6.5 6.7 Declarations

6.5.1 6.7.3 Type qualifiers
6.5.2 6.7.5 Declarators

6.5.2.1 6.7.5.2 Array declarators
6.6 6.8 Statements and blocks

6.6.2 6.8.5 Iteration statements
6.7 6.10 Preprocessing directives

6.7.1 6.10.6 Pragma directive
6.7.2 6.10.8 Predefined macro names

7 7 Library
7.1 7.1.2 Standard headers

Table A1. Mapping UPC spec sections to ISO/IEC 9899 sections

§C UPC versus C Standard Section Numbering 83

UPC Language Specifications Version 1.3 Draft 4

References

[CAG93] David E. Culler, Andrea C. Arpaci-Dusseau, Seth Copen Goldstein,
Arvind Krishnamurthy, Steven Lumetta, Thorsten von Eicken, Katherine A.
Yelick. Parallel programming in Split-C, Proceedings of Supercomputing
1993, p. 262-273.

[CDC99] W. W. Carlson, J. M. Draper, D.E. Culler, K. Yelick, E. Brooks,
and K. Warren. Introduction to UPC and Language Specification. CCS-TR-
99-157. IDA/CCS, Bowie, Maryland. May, 1999.

[ISO/IEC00] ISO/IEC. Programming Languages-C. ISO/IEC 9899. May,
2000.

[Lam79] L. Lamport. How to make a Multicomputer that Correctly Executes
Multiprocess Programs. IEEE Transactions on Computers, C-28(9):690-69,
September 1979.

[MPI2] MPI-2: Extensions to the Message-Passing Interface, Message Pass-
ing Interface Forum, July 18, 1997.

84 References

UPC Language Specifications Version 1.3 Draft 4

Index

__UPC_DYNAMIC_THREADS__,
41

__UPC_STATIC_THREADS__, 41
__UPC_VERSION__, 41
__UPC__, 41

access, 12
affinity, 12, 22, 46
AllStrict, 63

barriers, 35
block size, 19, 26
block size, automatically-computed, 29
block size, conversion, 24
block size, declaration, 30
block size, default, 29
block size, definite, 29
block size, indefinite, 29
blocking factor, 29

collective, 14, 35, 42
Conflicting, 63
continue, 37

data races, 16
definite block size, 29
DependsOnThreads, 63
dynamic THREADS environment, 15,

31, 41

exit, 16

feature macros, 60

global address space, 9

header files, 60

implicit barriers, 15, 35
indefinite, 29
indefinite block size, 29
ISO C, 9, 10

keywords, 18

local access, 13
locks, 48

main, 15
memory allocation, 43
memory consistency, 16, 35, 57, 61
memory consistency, barriers, 65
memory consistency, collective library,

68
memory consistency, examples, 71
memory consistency, fence, 65
memory consistency, locks, 65
memory consistency, non-collective li-

brary, 67
memory copy, 52
mutual exclusion, 48
MYTHREAD, 18, 19, 41

null strict access, 35

object, 11

parallel loop, 37
phase, 14, 22, 46, 47
pointer addition, 22
pointer equality, 22
pointer subtraction, 22
pointer-to-local, 12, 22
pointer-to-shared, 12, 22

Index 85

UPC Language Specifications Version 1.3 Draft 4

pointer-to-shared, casts, 24
pointer-to-shared, conversion, 24
pointer-to-shared, generic, 24
pointer-to-shared, null, 24
pointer-to-shared, type compatibility,

29
PotentialRaces, 70
pragmas, 40
Precedes, 79
predefined macros, 41
private object, 11
program order, 16, 79
program startup, 15
program termination, 16
proposed extensions, 59

relaxed, 18, 26, 27, 40
relaxed shared read, 13, 16, 40, 61
relaxed shared write, 13, 16, 40, 61

sequential consistency, 16, 69
shared, 18
shared access, 13, 16, 40, 61
shared array, 12
shared declarations, array, 31
shared declarations, examples, 29, 32
shared declarations, restrictions, 31
shared declarations, scalar, 31
shared layout qualifier, 27
shared object, 11
shared object, allocation, 43
shared object, clearing, 54
shared object, copying, 52
shared type, 11
single-valued, 14
sizeof, 20
static THREADS environment, 15, 31,

41

strict, 18, 26, 27, 40
strict shared read, 13, 16, 40, 61
strict shared write, 13, 16, 40, 61
StrictOnThreads, 63
StrictPairs, 63
struct field, address-of, 26
synchronization, 13, 35, 48
synchronization phase, 35

thread, 10
thread creation, 15
THREADS, 18, 19, 41
tokens, 18

ultimate element type, 10
UPC, 9
UPC Optional Library, 10
UPC Required Library, 10
UPC_ADD, 55
upc_addrfield, 22, 47
upc_affinitysize, 47
upc_all_alloc, 44
upc_all_free, 45
upc_all_lock_alloc, 49
upc_all_lock_free, 50
upc_alloc, 44
UPC_AND, 55
upc_barrier, 18, 35
upc_blocksizeof, 18, 21
UPC_CHAR, 56
UPC_DOUBLE, 56
upc_elemsizeof, 18, 22
upc_fence, 18, 35
upc_flag_t, 57
UPC_FLOAT, 56
upc_forall, 18, 37
upc_free, 45
upc_global_alloc, 43

86 Index

UPC Language Specifications Version 1.3 Draft 4

upc_global_exit, 16, 43
upc_global_lock_alloc, 49
UPC_IN_ALLSYNC, 57
UPC_IN_MYSYNC, 57
UPC_IN_NOSYNC, 57
UPC_INT, 56
UPC_INT16, 56
UPC_INT32, 56
UPC_INT64, 56
UPC_INT8, 56
UPC_LDOUBLE, 56
UPC_LLONG, 56
upc_localsizeof, 18, 20, 47
upc_lock, 51
upc_lock_attempt, 51
upc_lock_free, 49
upc_lock_t, 48
UPC_LOGAND, 55
UPC_LOGOR, 55
UPC_LONG, 56
UPC_MAX, 55
UPC_MAX_BLOCK_SIZE, 18, 19,

41
upc_memcpy, 52
upc_memget, 53
upc_memput, 53
upc_memset, 54
UPC_MIN, 55
UPC_MULT, 55
upc_notify, 18, 35
upc_op_t, 55
UPC_OR, 55
UPC_OUT_ALLSYNC, 57
UPC_OUT_MYSYNC, 57
UPC_OUT_NOSYNC, 57
upc_phaseof, 22, 32
UPC_PTS, 56
upc_relaxed.h, 42

upc_resetphase, 47
UPC_SHORT, 56
upc_strict.h, 42
upc_threadof, 22, 46
upc_type_t, 56
upc_types.h, 42, 55
UPC_UCHAR, 56
UPC_UINT, 56
UPC_UINT16, 56
UPC_UINT32, 56
UPC_UINT64, 56
UPC_UINT8, 56
UPC_ULLONG, 56
UPC_ULONG, 56
upc_unlock, 52
UPC_USHORT, 56
upc_wait, 18, 35
UPC_XOR, 55

work sharing, 37

Index 87

	List of Changes
	Acknowledgments
	Contents
	Introduction
	1 Scope
	2 Normative references
	3 Terms, definitions and symbols
	3.1
	3.2
	3.3
	3.4
	3.4.1
	3.4.2
	3.4.3

	3.5
	3.6
	3.7
	3.8
	3.8.1
	3.8.1.1
	3.8.1.2
	3.8.1.3
	3.8.1.4

	3.8.2

	3.9
	3.10
	3.11

	4 Conformance
	5 Environment
	5.1 Conceptual models
	5.1.1 Translation environment
	5.1.1.1 Threads environment

	5.1.2 Execution environment
	5.1.2.1 Program startup
	5.1.2.2 Program termination
	5.1.2.3 Program execution

	6 Language
	6.1 Notations
	6.2 Keywords
	6.3 Predefined identifiers
	6.3.1 THREADS
	6.3.2 MYTHREAD
	6.3.3 UPC_MAX_BLOCK_SIZE

	6.4 Expressions
	6.4.1 Unary Operators
	6.4.1.1 The sizeof operator
	6.4.1.2 The upc_localsizeof operator
	6.4.1.3 The upc_blocksizeof operator
	6.4.1.4 The upc_elemsizeof operator

	6.4.2 Pointer-to-shared arithmetic
	6.4.3 Cast and assignment expressions
	6.4.4 Address operators

	6.5 Declarations
	6.5.1 Type qualifiers
	6.5.1.1 The shared and reference type qualifiers

	6.5.2 Declarators
	6.5.2.1 Array declarators

	6.6 Statements and blocks
	6.6.1 Barrier statements
	6.6.2 Iteration statements

	6.7 Preprocessing directives
	6.7.1 UPC pragmas
	6.7.2 Predefined macro names

	7 Library
	7.1 Standard headers
	7.2 UPC utilities <upc.h>
	7.2.1 Termination of all threads
	7.2.2 Shared memory allocation functions
	7.2.2.1 The upc_global_alloc function
	7.2.2.2 The upc_all_alloc function
	7.2.2.3 The upc_alloc function
	7.2.2.4 The upc_free function
	7.2.2.5 The upc_all_free function

	7.2.3 Pointer-to-shared manipulation functions
	7.2.3.1 The upc_threadof function
	7.2.3.2 The upc_phaseof function
	7.2.3.3 The upc_resetphase function
	7.2.3.4 The upc_addrfield function
	7.2.3.5 The upc_affinitysize function

	7.2.4 Lock functions
	7.2.4.1 Type
	7.2.4.2 The upc_global_lock_alloc function
	7.2.4.3 The upc_all_lock_alloc function
	7.2.4.4 The upc_lock_free function
	7.2.4.5 The upc_all_lock_free function
	7.2.4.6 The upc_lock function
	7.2.4.7 The upc_lock_attempt function
	7.2.4.8 The upc_unlock function

	7.2.5 Shared string handling functions
	7.2.5.1 The upc_memcpy function
	7.2.5.2 The upc_memget function
	7.2.5.3 The upc_memput function
	7.2.5.4 The upc_memset function

	7.3 UPC standard types <upc_types.h>
	7.3.1 Operation designator (upc_op_t)
	7.3.2 Type designator (upc_type_t)
	7.3.3 Synchronization flags (upc_flag_t)
	7.3.4 Memory Semantics of Library Functions

	A Additions and Extensions
	B Formal UPC Memory Consistency Semantics
	B.1 Definitions
	B.2 Memory Access Model
	B.3 Consistency Semantics of Standard Libraries and Language Operations
	B.3.1 Consistency Semantics of Synchronization Operations
	B.3.2 Consistency Semantics of Standard Library Calls
	B.3.2.1 Non-Collective Standard Library Calls
	B.3.2.2 Collective Standard Library Calls

	B.4 Properties Implied by the Specification
	B.5 Examples
	B.6 Formal Definition of Precedes

	C UPC versus C Standard Section Numbering
	References
	Index

		2013-09-12T14:34:54-0400
	UPC Specification Working Group

